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Abstract 

Relational interpretations of type systems are useful for establishing prop- 
erties of programming languages. For languages with recursive types it 
is usually difficult to establish the existence of a relational interpretation. 
The usual approach is to give a denotational semantics of the language in 
a domain-theoretic model given by an inverse limit construction, and to 
construct relations over the model by a similar inverse limit construction. 
However, in passing to a denotational semantics we incur the obligation to 
prove its adequacy with respect to the operational semantics of the lan- 
guage, which is itself often proved using a relational interpretation of types! 
In this paper we investigate the construction of relational interpretations 
of recursive types in a purely operational setting, drawing on recent ideas 
from domain theory and operational semantics as a guide. We establish a 
syntactic minimal invariance property for an ML-like language with a recur- 
sive type that is a syntactic analogue of Freyd's universal characterization 
of the canonical solution of a domain equation. As Pitts has shown in the 
setting of domans, minimal invariance suffices to establish the existence of 
relational interpretations of recursive types. We give two applications of 
this construction. First, we derive a notion of logical equivalence for expres- 
sions of the language that we show coincides with contextual equivalence 
and which, by virtue of its construction, validates useful induction and coin- 
duction principles for reasoning about the recursive type. Second, we give 
a relational proof of correctness of the continuation-passing transformation, 
which is used in some compilers for functional languages. The proof relies on 
the construction of a family of simulation relations whose existence follows 
from syntactic minimal invariance. 





1    Introduction 

The interpretation of types by relations is a fundamental technique in the 
study of type systems (see, for example, Mitchell's survey [14] and mono- 
graph [15] for examples and references to the literature). The general idea 
is to associate to each type a relation over a suitable value space in such a 
way that well-typed terms are related appropriately by the interpretation. 
In many cases the existence of a relational interpretation is established by 
induction on the structure of types, but in more complex languages with 
impredicative polymorphism or (not necessarily positive) recursive types, 
more sophisticated methods are required. 

In the case of impredicative polymorphism the method of candidates 
introduced by Girard [8] may be used to construct a relational interpretation. 
For recursive types the usual approach is to pass to a domain-theoretic 
model of the language and to exploit the structure of the model to build the 
required system of relations. In practice the model (such as Scott's D^) 
is obtained as the inverse limit of a system of domains, and the required 
relational interpretation is obtained by exploiting the structure of the model 
arising from this construction. 

The denotational approach has been successfully used for a number 
of problems, including Reynolds' proof of correctness of the continuation- 
passing transformation used in some compilers for functional languages [20]. 
A disadvantage of this approach is that one must also prove the correctness 
(adequacy) of the denotational semantics of the language, which is itself of- 
ten established using a relational interpretation of types [19, 17]! Moreover, 
since the construction is carried out for a specific model of the language, it 
is not clear a priori to what extent the specific model affects the result. 

The latter question was recently addressed by Pitts [17] who showed that 
Freyd's universal characterization of the solution of a domain equation by the 
minimal invariant property [6, 5, 7] is sufficient to validate the construction 
of a wide class of relational interpretations of recursive types. The starting 
point for the present work is the observation that for a sufficiently rich lan- 
guage with recursive functions and recursive types the minimal invariance 
property of the model is expressible entirely in terms of the language itself 
by an equation stating that a particular recursively-defined function is de- 
notationally equivalent to the identity function on the recursive type. This 
opens the door to the construction of relational interpretations without the 
passage to a denotational semantics. The key is to establish the minimal 
invariance property up to contextual, rather than denotational, equivalence. 
With this syntactic minimal invariance property in hand we may exploit 



Pitts's results to construct relational interpretations over contextual equiv- 
alence classes of expressions entirely at the level of the language itself. 

Since contextual equivalence is a congruence, it induces a compositional 
interpretation that may be seen as a form of denotational semantics, albeit 
one that is adequate by construction. This suggests that our approach may 
be seen as a particular instance of the standard construction. However, 
as Mason, Smith, and Talcott have shown [11], the interpretation induced 
by taking contextual equivalence classes does not yield a domain in the 
conventional sense since, for example, not all chains have least upper bounds. 
Thus the operational approach to interpreting recursive types as relations 
differs fundamentally from the denotational method. 

We study the construction of relational interpretations for an ML-like 
language, £, with recursive functions and one recursive type. The opera- 
tional semantics of the language specifies a call-by-value, or "eager", eval- 
uation strategy, as in Standard ML [13]. We make no restrictions on the 
occurrence of the recursively-defined type in its definition — both positive 
and negative occurrences are permitted. 

The proof of syntactic minimal invariance for £ relies on a characteriza- 
tion of contextual equivalence given by Mason, Smith, and Talcott [11], 
called experimental equivalence. The primary interest in this notion of 
equivalence is that it coincides with contextual equivalence and supports 
a relatively straightforward proof of syntactic minimal invariance. Other, 
equivalent, characterizations are also available, but these do not appear to 
significantly simplify the argument. 

We give two examples of the use of relational interpretations to analyze 
properties of the language £. First, we derive another characterization of 
contextual equivalence, called logical equivalence, that validates induction 
and coinduction principles for reasoning about values of the recursive type. 
We illustrate the use of logical equivalence with two small examples based 
on similar examples given by Pitts [16]. Second, we give a relational proof 
of correctness of the continuation-passing (cps) transform introduced by 
Fischer [4] and Plotkin [18] and studied by Reynolds [20]. The proof relies 
on the construction of a relational interpretation of £ that establishes a 
correspondence between the evaluation of a program and its continuation- 
passing transform. This generalizes Reynolds' result [20] to the case of a 
typed language with an arbitrary recursive type, while avoiding the need to 
consider a denotational semantics for £. 

This paper is organized as follows. In Section 2 we define the syntax of 
the language £, define the operational semantics and show some standard 



typing properties, including type soundness. Then in Section 3 we define 
the notion of experimental equivalence, with which we shall be working in 
the remainder of the paper. The main result of this section is the proof 
of syntactic minimal invariance based on a technique introduced by Mason, 
Talcott, and Smith [11]. In Section 4 we define a universe of admissible 
relations over contextual equivalence classes of closed expressions. We also 
define relational operators corresponding to the type constructors of the lan- 
guage and show that they preserve admissibility. The relational constructors 
are used in Section 5 where we construct a relational interpretation of types 
using the method described above. In Section 6 we show how to use our 
method to give a relational interpretation which coincides with contextual 
equivalence. In Section 7 we apply the method to give a proof of correctness 
of the cps transformation. Finally, in Section 8 we discuss related work, and 
in Section 9 we conclude. 

2    The Language 

The language, £, is a simply-typed fragment of ML with one top-level re- 
cursive type. We let x and / range over a set Var of program variables. The 
syntax of the language is given by the following grammar: 

Types T   ::=   0 | 1 | p | T\ + r2 | T\ X T2 | T\ -*■ r2 

Expressions    e   ::=   v | in e | out e | inlT e | inrT e | case(ei, e2,63) | 
(ei, e2) I fst e I snd e | e\ e2 

Values v    ::=   * | in v | inlT v | inrT v \ 
(vi,v2) I fix/(x:r).e 

Evaluation     E   ::=   _ | in E | out E | inlT E | inrr E \ case(E,e,e') \ 
Contexts (E, e) \ (v, E) \ fst E \ snd E \ E e \ v E 

The C raw terms are given by the syntax trees generated by the grammar 
above, with e as start symbol, modulo a-equivalence, as usual. Alpha- 
equivalence is denoted =a. Observe that p is a type constant. Distinguish 
a fixed type expression TP, the intuition being that p is a recursive type 
isomorphic to rp; in and out are used to mediate the isomorphism. 

A finite map is a map with finite domain. We use 0 to denote the map 
whose domain is the empty set. The domain and range of a finite map / are 
denoted Dom(/) and Rng(/), respectively. When / and g are finite maps, 
/ + g is the finite map whose domain is Dom(/) U Dom(^) and whose value 
is g(x), if x & Dom(g), and f(x) otherwise, f i A means the restriction 
of / to ^4, and f \ A means / restricted to the complement of A. We use 



[x\ : yi,... ,xn : yn] to denote the finite map which maps xi to j/j, for all 
1 <i <n. 

We denote the set of all types by Type. A typing context is a finite 
map from variables to types; we use T to range over typing contexts. If 
x 0 Dom(r), then T[x : r] denotes the typing context V + [x : T]. A typing 
judgment has the form T \- e : T. The typing rules are given in Figure 1. We 
write h e : r for 0 h e : r. The C terms is the set of raw terms e for which 
there exists, for each e, a typing context V and a type r such that Their. 

Note that, even though there is no explicit introduction rule for the type 
0, there are terms of this type, for instance (fix f(x:l).fx) *. 

The set of expressions of type r with free variables given types by F, 
denoted ExpT(T) is defined as follows. 

Expr(r)
d={e | Their} 

Further define 
ExpT 

d= ExpT(0) 

Likewise, we define sets for values as follows. 

ValT(r) d= {v | Thv.r} 

and 
ValT

d=ValT(0) 

Substitution of an expression e' for free occurrences of x in e is written 
[e'/x]e. The parallel substution of ei, ...en for xi, ..., xn in e is written 
[ei,..., en/xi,...,xn]e. We let FV(e) denote the set of free variables in e. 
We use Xx:T.e as an abbreviation for fix f(x:r).e where / is some variable 
satisfying / 0 FV(e). 

2.1     Contexts 

The C contexts, ranged over by C, are the syntax tree generated by the 
grammar for e augmented by the clause 

C    ::=    ---Ip 

where p ranges over some fixed set of parameters. Note that the syntax 
trees of £ terms are contexts, namely the ones with no occurrence of param- 
eters. [C/p]C denotes the context obtained from context C" by replacing 
all occurrences of p in C with C. This may involve capture of variables. 



r h x : T    (F{x) = T) 

Th*: 1 

r h ei : T\        T h e2 : T2 

rh(ei,e2): : T\  X T2 

r h e : n X T2 

r H fst e : n 

T h e : Ti X T2 

T h snd e : r2 

The: Tl 

T h inlT2 e : n + r2 

The: 7"2 

r h inrTl e : ri + T2 

r I- ei : TI + T2        T h e2 : n —^ r        r h e3 : T2 -1 T 

T h case(ei,e2,e3) : r 

r[/ : n -^ T2][X : n] I- e : T2 

T h fix f(x:T\).e : T\ -± T2 

r h ei : T2 —*■ T        T h e2 : T2 

T h ei e2 : T 

rhe:p 

(/,a:0Dom(r)) 

T h out e : T„ 

Fhe-.Tp 

T h in e : p 

(T-VAR) 

(T-ONE) 

(T-PROD) 

(T-FST) 

(T-SND) 

(T-INL) 

(T-INR) 

(T-CASE) 

(T-FIX) 

(T-APP) 

(T-OUT) 

(T-IN) 

Figure 1: Typing Rules 



Lemma 2.1 If Ci =a C2 then [d/p]C' =a [C2/p]C. 

Proof By induction on C. □ 

By Lemma 2.1, the operation of substituting for a parameter in a context 
induces a well-defined operation on «-equivalence classes of L contexts. 

Notation 2.2 Most of the time we will only use contexts involving a single 
parameter which we will write as _. We write C{-} to indicate that C is 
a context containing no parameters other than _ (note that it may contain 
no parameters at all). If e is an C term, then C{e] denotes the raw term 
resulting from choosing a representative syntax tree for e, substituting it 
for the parameter in c and forming the a-equivalence class of the resulting 
C syntax tree (which by the remarks above is independent of the choice of 
representative for e). 

2.2 Typed Contexts 

We will assume given a function that assigns types to parameters. We write 
_T to indicate that a parameter _ has type r. 

The relation T h C : r is inductively generated by axioms and rules 
just like those defining Their together with the following axiom for 
parameters. 

T h _T : r (T-PAR) 

The set of contexts of type r with free variables given types by T, denoted 
Ctxr(r) is defined as follows. 

ctxT(r)d= {c | Fhc-.r} 

Ctxr=
f Ctxr(0) 

2.3 Evaluation 

The operational semantics will be given by term rewriting and will be defined 
for all closed terms (not only those of ground type). 

The set of evaluation contexts are the syntax trees generated by the 
grammar for E. Note that this is clearly a subset of the set of contexts 
(with parameters including _). Hence we shall use the notation associated 
with contexts for evaluation contexts also. In addition, we define 

ECtxr(r)
d= {E I T\-E:T} 



and 
ECtxr =fECtxT(0) 

Note that evaluation contexts are not capturing. Hence we have the follow- 
ing lemma. 

Lemma 2.3 For alle € ExpT and for allE{.T} € ECtxr<, E{e} = [e/x]E{x} 

Proof By induction on E. D 

Redices are generated by the following grammar. 

Redices   r   ::=    (fix f(x:r).e) v | fst (v\,V2) | snd (^1,^2) | 
out (in v) I case(inlT w,ei,e2) | case(inrT v,e\,e2) 

Note that the set of redices is a subset of the set of expressions. We define 

and 

RexpT(r) -f {r I Thr :T} 

Rexpr = Rexpr(0) 

Lemma 2.4 For all e € ExpT\ ValT, there exists a unique pair of evaluation 
context, E, and redex, r, such that e = E{r}. 

Proof By induction on e. D 

The reduction rules for redices are as follows. 

(fix f(x:r).e) v ~+ [fix f(x:r).e, v/f, x]e (R-BETA) 

fst (-01,^2) ~* v\ (R-FST) 

Snd (;Ul,U2) "** V2 (R-SND) 

out (in v) -w v (R-OUT) 

case(inlT v,e\,ei) ~* e\v (R-CASE-INL) 

case(inrT w,ei,e2) ~^ e2V (R-CASE-INR) 

Further, we define, for closed expressions e and e', e 1-4 e' if and only if 
e = E{r} and e' = E{e\] and r ~~> e\. 

Definition 2.5 The reflexive and transitive closure of *-t is denoted t-t*. 
For n > 0, we define e ^n e' iff e = eo >->• e\ i->- ■ ■ ■ en-\ H* en = e'. 
Further, we write e ff iff whenever e i->* e1, there exists an e" such that 
e' >-> e". Finally, we write e § iff there exists a v such that e i->* v. 



Note that evaluation is only defined for closed expressions and that during 
evaluation we will only ever substitute closed values for variables. 

Lemma 2.6 (Evaluation is deterministic) If e \-¥ e' and e H* e", then 
e' = e". 

Proof Follows by Lemma 2.4. □ 

Lemma 2.7       1. For all r and all v G ValT: v JJ-. 

2. For all e G ExpT, if e ^ e', then e G ExpT \ ValT. 

Lemma 2.8 For all E{-n} G ECtxT2, and for all e G Expn \ ValT1, if 
E{e] f-> E{e'}, then there exists £a{-r3} G ECtxn and r G RexpT3 and 
ei G ExpT3 such that e = Ei{r} and e' = Ei{ei} and r ^ e\. 

Lemma 2.9       1. If r[i:r]he: r' and Y \- e' : r, then Y h [e'/x]e : T'. 

2. If h E{e} : r then there exists a re such that h e : re and h E{e'} : r 
for all e' such that h e' : re. 

Theorem 2.10 (Preservation) 

// e H-> e' and he:r, then h e' : r. 

Proof By the definition of the evaluation relation and Lemma 2.9. D 

Lemma 2.11 (Canonical Forms) Suppose that h v : r.  Then 

• If T = 1, then v = *. 

• If T = p, then v = \nv' for some v' G Va/T/:,. 

• IfT = T\+T<2, then either v = inlT2 v' for some v' G ValTl orv = inrTl v' 
for some v' G ValT2. 

• If T = TI x T2, then v — (1*1,^2) for some v\ G ValT1 and some «2 G 
ValT2. 

• If T = T\ -^ T2, then v = fix f(x:T\).e for some variables f and x, and 
some e G ExpT2([f :TI-

X
T2,X: TI]). 



Proof   By inspection of the typing rules and the definition of closed val- 
ues. D 

Theorem 2.12 (Progress) //  h e : r, then either e is a value or there 
exists an e' such that ei->e'. 

Proof By induction on h e : r. D 

Lemma 2.13 (Uniformity of Evaluation) For all e G ExpTl \ ValTl and 
for all E{.n} G ECtxT2, if E{e} n-> E{e'}, then V£'{_Tl} e ECtxT2 : 
E'{e} ^ E'{e'}. 

Proof By the definition of the evaluation relation e4e' and the definition 
of the reduction rules. D 

Lemma 2.14 For all e,e' G ExpT \ ValTl and for all E{-r} G ECtxTi, if 
E{e} H-^ E{e'}, then also e i-> e'. 

Lemma 2.15 If e G ExpT and e ft, then VE{..T} G ECtxT> : E{e} f|\ 

3    Experimental Equivalence 

For closed expressions of base type 1, we define a notion of Kleene approxi- 
mation and Kleene equivalence as follows. 

Definition 3.1 (Kleene Approximation and Equivalence) For alle,e' G 
Exp1, we define e -<k e' iff e 1-4* * =>• e' >-¥* * and e &k e' iff e i->* *   4=> 
e' i-V *. 

For closed expressions we define notions of experimental approximation and 
experimental equivalence as follows. 

Definition 3.2 (Experimental Approximation and Equivalence)   For 
all e,e' G ExpT, we define 

\-e±e' :T     <S=»    V£{_T} G ECtxx : E{e\ ^k E{e'} 
h e « e' : r     «=►     V£{-r} G ECtxi : E{e} «fc £{e'} 

Lemma 3.3   hesie':T <*=>  ( h e ^ e' : T     A      H e' r< e : r) 



Notation 3.4  When r is clear from context we write e ■< e' for h e < e1 : r 
anrf e « e' /or h e K e' : r. 

We now establish some basic properties of experimental equivalence and 
evaluation. 

Lemma 3.5 If h ei « e2 : r i/ien ei JJ- i/f e2 JJ-. 

Lemma 3.6 For a// e £ FxpTl and /or a?/ #{-n} e ECtxT, 
\-E{e}^(Xx:T.E{x})e:T. 

Lemma 3.7 (H^C«) For aW e,e' £ FzpT, i/e ^ e', then he«e':T. 

Lemma 3.8   Experimental equivalence, w, is an equivalence relation. That 
is, the following three properties hold. 

1. If h e\ « e2 : T and h e2 « e3 : T, £/«en h ei « e3 : r. 

#. 7/ e G Fa;pT, £/ien he«e:r. 

3. If h e\ « e2 : T, i/ien h e2 « ei : T. 

Lemma 3.9 

1. //he« (ei, e2) : TJ x T2 tfien e JJ- i/f ei JJ and e2 JJ-. 

2. If h e « (ei, e2) : n x r2 and h ei « e^ : T\ and h e2 « e'2 : r2; i/jen 
he« (e'^e^) : n x r2. 

3. If   he«  (ei,e2)  : T\ X T2  and e JJ-,  £/ien    h fst e « ei  : n  and 
h snd e « e2 : r2. 

Lemma 3.10 

i. 7/ h e « inlT2 e' : Ti + r2 tfaen e JJ i/f e' 4- 7/ he« inrT1 e' : n + r2, 
i/ien e JJ «// e' JJ-. 

£ 7/ he« inlT2 e' : T\ + T2 and he'« e" : n, then he« inlT2 e" : 
T\ + T2. 7/ he« inrTl e' : T\ + T2 ana" he'« e" : r2, #ien he« 
inrri e" : Ti +T2. 

5. 7/   h e « inlT2 e' : Ti + r2 and e JJ., i/ten f/jere exists a v' such that 
he« inlT2 v' : rx + r2 ana1  h e' « v' : T\.  If he« inrTl e' : n + r2 

and e JJ-, then there exists a v' such that  h e « inrri v' : r\ + r2 and 
he'««': r2. 

10 



4-    f- inlT2 e m inlT2 e' : T\ + T2 iff  \~ e & e' : TI.    h inrTl e « inrTl e' : 
n + n iff \~ e sa e' : r2. 

Lemma 3.11 

i. // h e « in e' : p, then e -IJ- iff e' JJ-. 

2. If h e sa in e' : p and e' ft £/ien e ff- 

3. If h e « in e' : p and he's e" : Tp; £/*en  h e « in e" : p. 

^.   h in e ss in e' : p ijff h e sa e' : TP. 

We shall now prove a somewhat technical lemma to the effect (Corol- 
lary 3.13) that we can restrict the set of evaluation contexts to consider 
when proving h e ■< e' : r. It turns out that we can restrict attention to the 
evaluation contexts for which the hole occurs in an atomic testing context. 

The atomic testing contexts, ranged over by T are the syntax tree gen- 
erated by the following grammar 

T   ::—   -1 I out -p | case(_Tl+T2, e±, e^) | fst _riXT2 | snd ^XT2 | -r1^T2 v 

We define 
TCtxr(r)=

f {T I F\-T:T} 

and 
TCtxT =f TCtxr(0) 

We shall be a little more pedantic than elsewhere in the following lemma 
as it is a little delicate. 

Lemma 3.12 Vn G N : Vr 6 Type : Vu, v' G ValT : if 

W G Type : V£{_T>} G ECtxx : VTj^} € TCtxT, : £{T»} ^fc E{T{v'}} 

(1) 

Vr' € Type : to G Var : Ve G £kpr,([2 : T]) : V£{_T/} G £C7tei([;s : T]) : 
([«/*](£{«}) H>» *) =► ([t//z](E{e}) ^ *) 

(2) 

Proof By induction on n. 
Basis (n = 0): Let r G Type and u,t/ G ValT be arbitrary. As- 

sume (1). We are to show (2) with 0 substituted for n. Let T' G Type, 
z G Var, e G ExpT/([z : r]), and Ü?{-T'} G ECtxi([z : r]) be arbitrary. As- 
sume [v/2;](jB{e}) i->-0 *. Then [v/z](E{e}) = *. Thus there are two cases 
to consider. 

11 



1. T' = 1, E = _i, and e = * 

2. r' = 1, E = _i, e = z, r = 1, and v = * 

SubCase 1: Then also [v'/z](.E{e}) = * and hence [v'/z](E{e}) ^* *, as 
required. 

SubCase 2: By assumption (1) with r' = r, £^{-T'} = -r, and T{_T} = _i, 
we have that (v i->* *) => (?/ >-»•* *). As v = *, indeed (v !->■* *), whence we 
can conclude that v' !->•* *. Thus v' = * and hence also [«'/^(^{e}) = *, so 
[v'/z](E{e}) i-)-* *, as required. 

Inductive Step: We assume that the lemma holds for n > 0 and show 
for n + 1. Let r G Type and v,v' G Valr be arbitrary. Assume (1). 
We are to show (2) with (n + 1) substituted for n. Let r' G Type, 2; G 
Var, e e ExpT/([2; : r]), and £{-T'} G ECtxi([2 : r]) be arbitrary. Assume 
[v/z](i£{e}) i-)-n+1 *. Since there is at least one reduction step, we can 
proceed by cases on the first reduction step. 

Case R-BETA: Then there are two cases 

1. r = n -»■ T2 and E{e} = E'{zvi} for some £'{-T2} G ECtxi([s : T]) 

and some vi G ValTl ([z : r]) 

2. 25{e} = £"{fix /(a;:ri).e0 «i} for some E'{„T2} G ECtxi([z : r]), some 
^i G ValTl([2; : rj), and some fix f(x:Ti).eo G ValTl^r2([z : T]) 

SubCase 1: Then u is of the form fix /(a;:Ti).eo. Thus 

[v/z](E{e})     = K^'^}) 

= [u/*](^{(fix/(a;:Ti).eo)i;i}) 

^ [«/*](£'{[«, wi//,s]e0}) (3) 
H->n * (4) 

Now by the induction hypothesis we have (with r = r, v = u and v' = u' 
and noting that (1) holds by assumption) that 

W G Type : Vz G Var : Ve G Expr,([z : r]) : V£{_T,} G ECtxi([;s : r]) : 
([«/^(^{e}) ^" *) => ({v'/z](E{e}) ^* *) 

(5) 
Letting r' = T2, z = z, e = [v,vi/f,x]eo, and E{-T'} = E'{-T2} in (5) and 
using (3) and (4), we conclude that 

[v'/z]E'{[v,vi/f,x]eo}^** (6) 

12 



By (6) and recalling that v = fix f(x:ri).eo we get that 

[v'/z}E'{vVl} H. [v'/z]E'{[v,v1/f,x]e0} ^* * (7) 

By assumption (1) on (7) with r' = r2, E{-T>} = [v/z](E'{-T2}) G ECtxi, 
and T{_T} = _r {[v/z]vi) G TCtxT2 we get 

[v'/z]E'{v'v1}»** (8) 

Hence, as [v'/z]E{e} = [v'/z]E'{v'vi}, we have the required by (8). 
Sub Case 2: Then 

\v/z\(E{e})     =     [<;/*](£'{fix /(a::r1).eoüi}) 

H+     [«/«](^{[fix/(a;:Ti).eo,v1//,a;]eo}) (9) 

^"    * (10) 

Now by the induction hypothesis we have (with T = T, v = v and v' = v' 
and noting that (1) holds by assumption) that 

W G Type : Mz G Var : Ve G ExpT,([;z : r]) : V£{_T/} G ECtxi([z : r]) : 
({v/z](E{e}) ->« *) => ([v'/z](E{e}) ^* *) 

(11) 
Letting T

1
 = T2, z = z, e = [fix /(a::7i).eo,vi//,a;]eo, and -E{-T'} = #'{-T2} 

in (5) and using (9) and (10), we conclude that 

[v'/z](E'{[i\x f(x:T1).e0,v1/f,x]e0}) H+* * (12) 

We have that 

[v'/z](E{e})    =    [v'/z]{E'{(r,xf(x:T1).e0)v1}) (13) 

^    [v'/z}(E'{[i\xf(x:T1).e0,v1/f,x}e0}) (14) 

Hence, combining (12) and (13) and (14), we have that 

[v'/z](E{e}) ^* * 

as required. 
Case R-OUT, R-CASE-INL, R-CASE-INR, R-FST, or R-SND: The proof for 

each of these cases proceeds analogously to the previous case, with two sub- 
cases for each case, and using the corresponding atomic testing contexts. D 
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Corollary 3.13 Vr G Type : Vu,u' e ValT : if 

Vr' € Type : V£{_T>} G £Cfcci : VT{_T} G T(7fcv : £{T{u}} r<fe E{T{v'}} 
(15) 

I- v ^ w' : r 

Proof   Let r G Type, and v,v' G ValT be arbitrary.   Assume (15).   Let 
E{-T} G ECtxi be arbitrary. We are to show that 

E{v} H>* * =» £{u'} ^* * (16) 

Prom our assumption (15) we get by Lemma 3.12 

Vr' G Type : Vz G Var : Ve G ExpT,([z : r]) : V£{_T>} G ECtxi([z : r]) : 
([v/z](E{e}) ^* *) => ([v'/z](E{e}) ^ *) 

(17) 
Letting r' -r,e = z and #{-T'} = E{.r) in (17), we get (16), as required. D 

The next corollary is an immediate consequence of Corollary 3.13 and is 
the formulation which we will often make use of in the following. 

Corollary 3.14 

1. To show \- v < v' : T\ -^ T2, it suffices to show 

V£{_T1^T2 vi} G ECtxx : E{v} ±k E{v'} 

2. To show h v ;< v' : T\ XT2, it suffices to show 

V£{fst -nxrj G ECtxi : E{v} <k E{v'} 

and 
V£{snd _TIXT2} € ECtxi : E{v} d? E{v'} 

3. To show \- v ^ v' : Ti + T2, it suffices to show 

Vß{case(_T1+T2,ei,e2)} G ECtxx : E{v} dk E{v'} 

4-  To show \- v <v' : p, it suffices to show 

V£{out _„} G ECtxx : E{v} ^k E{v'} 

Proof Follows by Corollary 3.13 and the definition of atomic contexts.   D 

14 



3.1    Compactness of Evaluation 

In this section we show that a fix-term is approximated, in the experimental 
approximation pre-order, by its finite unrollings. Further, we show that to 
fill a context is a monotone operation with respect to the experimental pre- 
order and we use this to show that a fix-term is the least upper bound of 
its finite unrollings. These properties are also referred to as compactness of 
evaluation. Finally, we show that to fill a context is a continous operation 
with respect to the approximation pre-order. We shall only be concerned 
with closed fix-terms, as this suffices for our purposes. 

Our development of compactness of evaluation follows the approach of 
Pitts [16, Section 5] quite closely but there are some technical differences due 
to the fact that we use a reduction semantics rather than a natural semantics 
as employed by Pitts. We have chosen this formulation, using cofinal sets, 
because it fits nicely with our formulation of admissible relations, for which 
a formulation based on cofinal sets suffices (see Section 4). 

Throughout this section we shall consider a particular fixed term F = 
fix f(x:T\).e satisfying F € ExpTl^T2, and use the following abbreviations: 

F0    =    fix/°(a;:Ti).e = fix/(X:TI)./S 

Fn+l    
dM   fix/n+1(a;:ri).ed^Ax:ri.[Fn//]e 

Fu   *£   F 

Note that we here simply define some abbreviations of expressions already in 
the language. This is opposed to introducing new labelled expressions and 
new notions of reduction for labelled expressions as, e.g., done by Gunter [9]. 

We will only consider contexts involving parameters of type T\ -
A
 r2. 

We write C{p} for such a context whose parameters are included in the list 
p (note that we do not required that all the parameters in p occur in C). 
Given an fc-tuple n — (ni,..., n*) of natural numbers, then we make the 
following abbreviations. 

C{Ffi}    =    C{Fni,..., Fnk} 

C{Fa}   d^   C{FU,...,FU} 

The length of a list of parameter p will be denoted |p|. 

Definition 3.15 For each k, we partially order the set Nk by 

n <n' 4=^  (ni < n[ A ■ ■ ■ A rik < n'k) 
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Definition 3.16 A subset I C Nk is said to be cofinal in Nk if and only if, 
for all n € Nk, 3n' E I : n < n'. We write Vcof(N

k) for the set of all such 
cofinal subsets of Nk. 

We say that a context C is a value if it follows the grammar for values v 
augmented by the obvious clause for parameters. We introduce the following 
definitions of sets of value contexts 

VCtxT(r) = { C G CtxT(r) | C is a value or C is a parameter } 

VCtxT
d=VCtxT(0) 

We use V to range over value contexts. We say that a value context is proper 
if it is not a parameter. 

Remark 3.17 Note that, if V{-T} £ VCtxTi is a proper value context and 
e G ExpT, then V{e} is a value. Also, ifV{-T} € VCtxTi and v € ValT, then 
V{v} is a value. 

Notation 3.18 We abbreviate V{F^} and V{FQ} analogously to C{Fifl} 
and C{FQ}. 

Definition 3.19 If C{p} is a context and V{p'} is a value context, then we 
write C{p} tyF V{p) to mean that for all I £ Vcoi{N^) 

{mm' | rh£lAC{FrA}^*V{FrAI}}eVca[{N^+^) 

Note that the relation C{p} i}.F V{p} is preserved under renaming of the 
parameters p and, independently, the parameters p . 

Lemma 3.20 If C{p} is a context and V{p } is a value context, then 

C{p}i^FV{0}  <=>  C{pq}HFV{p'c?} 

Proof By definition of Jj-F and simple properties of cofinal subsets of Nk. D 

Lemma 3.21 

1. IfV{p} is a proper value context, then V{p} tyF V{p}. 

2. If E'{V}{p] $F V"{p"} and V'{pp'} is a value context, then 
E'{fst(V,V')}{ppl}VV"{p"}. 
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3. IfE'{V}{p} 4F V"{p?'} and V'{pp'} is a value context, then 
E'{snd(V,V')}{pp'}rV"{p"}. 

4. IfE'{V}{p}^FV'{pi},then 
E>{out(\nV)}{p}VV{p'}. 

5. IfE'{ei v}{p} 4F V{p} and e2 = C2{Fa} for some C2{0}, then 
E'{case(inlT2 v,eue2)}{ptf} ^ V{p'} 

6. IfE'{e2v}{p} tyF V{p'}, and ex = Cx{Fa} for some Ci{pp'}, then 
E'{case(inrTl v,eue2)}{pp} ^ V{p'} 

Proof Item 1 is immediate. We show item 2; items 3-6 are similar. 
Let C = E'{V} and let C = E'{fst (V, V')}.   By the assumption and 

Lemma 3.20, 
C{tf}^FV"{p") (18) 

Assume / e VC0{{N^+^^). Then we are to show that 

I' d£ { mm' | m e I A C'{FA} ^* V"{FM} } 

,J/I  ,  - -// - 

is a cofinal subset of JVlPl+lP I+IP I. But C'{FA} i-> C{FÄ} so by determin- 
ism of evaluation, C'iF^} *-*■* V"{FM] if and only if C{FA} ■-)■* F"{FÄ/}. 
Hence I' equals the set 

{mm' | me IA C{Fft} ^* V'^F^} } 

which by (18) is a cofinal subset of JVlPWP WP I, as required. D 

Lemma 3.22 (Compactness of Evaluation) For all C{p} € Ctxr, if 
C{FQ} I->* v, then there exists a V{0} € VCtxT such that v = V{F^} 
and C{p} tyF V{p'}. 

Proof By induction on the length, n, of C{F^} H** V. 

Basis (n = 0): Pick V = C. If C is a parameter, then the required 
is immediate (recall that Fw is a value). Otherwise, C is a proper value 
context and the required follows by Lemma 3.21, item 1. 

Inductive Step: We assume it holds for n and show for n + 1. To this 
end assume C{FQ} h->n+1 v. We proceed by cases on the first reduction 
step. 

Case R-FST: Then C{Fa} = E{fst (wi,«2)} with E = E'{Fa}, vi = 
Vi{FQ}, and v2 = V2{FQ] for some E'{p[}, Vi{P~i}: and ^{p^p^} with 
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p = p"ip^. Moreover, E{fst (vi,v2)} t-* E{vi} ^n v. Note that E{vi} 
is of the form C[{Fa} where C{{p~i} = E'{Vi}{p[}. Hence we can apply 
induction on n to yield that there exists a Fjp'} such that v — V{Fj} and 
C'liPi} ^F V{p'}. By Lemma 3.21, item 2, also C{p} Jj-F V{p'}, as required. 

Case R-SND, R-OUT, R-CASE-INL, R-CASE-INR: All analogous to preced- 
ing case, using corresponding item in Lemma 3.21. 

Case R-BETA: Then C{FÜ} = E{(i\x f'(x':T').e') v'} for some /', x', r', 
e', v', and E. There are two cases, depending on whether F — fix f'(x':T').e' 
or not. 

SubCase I: Assume F = fix f(x':T').e'. Then 

C{Fa)     =     E{(i\xf(x:r).e)v'} 

^    E{[f\xf(x:T).e,v'/f,x]e} 

where E = E'{Fj} and v' = V'{Fa} for some E'{p} and F'{p}. We have 
that 

£?{[fix f(x:r).e,v'/f,x]e} = Ef{\p,V'lf,x]e}{Fa} 

Let C'{pp} = E'{\p,V'/f,x]e}.   Then we have that C'{Fa} ^
n v so by 

induction on n there exists a F-fp'} such that v = V{p } and 

cm ^ vip1} (i9) 

We aim to show that 

C{p}fV{p'} (20) 

Let / G VC0f(N^) be arbitrary. We are to show that 

h d= {mm! | m G / A C{F^} ^* F{F,^y} } 

is a cofinal subset of JVlPl. Define 

72 
d=If { M | m G I A n = nk A C{FÄ} ^ C'{Fn^} } 

Clearly, J2 is cofinal since I is cofinal. By (19) we therefore have that 

h = { mm' | m G J2 A C"{FÄ} H** F{Pä,} } 

is cofinal. Now it is easy to see that I3 C Ix and thus, since J3 is cofinal, I\ 
is cofinal. Since I was arbitrary, we have (20) as desired. 
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SubCase II: Assume F ^ fix /'(x':r').e'. Then 

C{Fa}     =     E{(i\xf'(x':T').e')v'} 

H.     E{[fixf'(x':T,).e!,v'/f,x]e!} 

\-^n   v 

and E{[i'\x f'(x':T').e',v'/f,x]e'} is of the form C\{Fa} for some Ci{pp~i}. 
By induction we get that 

CIIPTIH^P'} (21) 

Let I G Pcof (JVlPl) be arbitrary. Let 

7i =f {mm! | mG/Am'GiVPi} 

Then I\ is a cofinal subset of JVlPl+lPil since I is cofinal. Hence, by (21), 

h d= { mrh'rh" \ mm! e h A Ci{l^y } H+* V^F™»} } 

is cofinal and thus it is easy to see that also 

h = { mm" | me I A C{Fm} H>* V{FW} } 

is cofinal, as required. D 

The following lemma expresses that the finite unrollings of a fix-term 
form a chain with respect to the approximation order and that the fix-term 
itself is an upper bound of this sequence. We shall soon see that it is in fact 
the least upper bound. 

Lemma 3.23 For all i € N,    \~ Fi < Fi+1 : TX -± r2 and   h F; ■< Fu : 
r\ ->■ r2. 

Proof Both properties are shown by induction on i. D 

To show that a fix-term is the least upper bound of its finite unrollings 
we shall need that the operation of filling a context is a monotone operation 
with respect to the experimental pre-order (in other words, the experimental 
pre-order is a pre-congruence). To this end we shall first generalize the 
experimental pre-order to open expressions in the following way. 
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Definition 3.24 An expression substitution 7 for a type environment V is 
a finite map from variables to closed expressions satisfying the following two 
conditions. 

1. Dom(7) = Dom(r). 

2. Vrc G Dom(7) : 0 I- 7(2:) : T{x). 

Definition 3.25 A value substitution 7 for F is an expression substitution 
for F satisfying Vic G Dom(r) : j(x) -I]- 

Definition 3.26 Let 7 and 7' be expression substitutions for F. Then 7 
approximates 7', written h 7 ^ 7' : T, «/ and only if \/x G Dom(T) : H 
j(x) ■< j'(x) : r(a;). Likewise, we write h 7 K f : T, »/ and only if 
\/x G Dom(r) :  h 7(1) « Y(a;) : F(x). 

Note that this definition also expresses when a value substitution 7 approx- 
imates another value substituition 7' (both for some T) as a value substition 
is just a special expression substitution (we need a notion of expression 
substition in Section 3.2, which is why we have chosen this formulation). 

Definition 3.27 (Open Experimental Approximation and Equivalence) 
For all e and e', if F h e : r and F h e' : T, then we define F h e ■< e' : r if, 
and only if, for all value substitutions 7 and 7' for F satisfying h 7 -< 7' : F, 
\- 7(e) ■< 7'(e') : r.   Moreover, we define F h e « e' : r «/ anc? on/?/ «/ 

r h e X e' : r anG? F h e' ^ e : T. 

An alternative definition of open experimental approximation would be to 
say that T h e ^ e' : T if and only if, for all expression substitutions 7 
for T, h 7(e) -< 7(e') : r. However, we need the more general definition 
(specifically it is used in proving (22) below). 

Lemma 3.28 If [f : T± —*■ T2,x : T\] \- e < e' : T2 then h fix f(x:ri).e -< 
fix f(x:Ti).e' :T\ —*■ T2. 

Proof By induction on i, it is easy to show that, for all i G A", 

h fix fi{x:r1).e < fix fix-.Tij.e1 :T^T2 (22) 

By Corollary 3.14, it suffices to show, 

V£{_T1_,T2 «1} G ECtxi : £{fix f{x:n).e} <k £{fix f(x:Ti).e'} 
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So assume, E{(fix f(x-.Ti).e) (vi)} i->* *. Let C{-n-,T2} = E{.Tl^T2v\}. 
Then, by Lemma 3.22, there exists a F-fp'} such that V-fi^} = * and 

C{p} f V{p'} (23) 

Let I = N, clearly a cofinal set. Then by (23), 

I' = {i e I | C{fix f(x:n).e} ^* * } 

is a cofinal subset of iV|p|. Hence /' is in particular non-empty, i.e., there 
exists i e I' such that C{fix fl(x:ri).e} >-^* *. Thus, by definition of I and 
C, there exists an i € N such that E{(i\x fl(x:ri).e) (v\)} (->■* *. Hence, 
by (22), we also have £{(fix p{x:ri).e>) (vi)} H+* *. Then by Lemma 3.23, 
we get jE7{(fix f(x-.Ti).e') (vi)} i->* *, as required. D 

Lemma 3.29 7/r,T' h e ^ e' : T, C{_T} € CtxT,(T), Y h C{e} : r', and 
r h C{e'} : T', then F h C{e} ^ C{e'} : r'. 

Proof By induction on C. In the case for C = fix f(x:r).C', use Lemma 3.28; 
all the other cases follow easily (either directly by the assumptions or by 
induction and using Lemmas 3.7-3.11 and composition of evaluation con- 
texts). D 

The following corollary expresses the monotonicity of contexts with re- 
spect to the experimental pre-order — in other words, the experimental 
pre-order is a pre-congruence. We shall subsequently show that contexts are 
not only monotone, but also continuous (in an appropriate sense). 

Corollary 3.30 (Context Monotonicity) If H e ■< e' : T\ and C{_Tl} G 
CtxT, then h C{e} < C{e'} : r. 

Proof Follows immediately by Lemma 3.29. D 

Lemma 3.31 If h e\ ■< e[ : T\, ..., \- ek ^ e'k : rk and C{_i,..., _fe} € CtxT 

with _j of type ri, for all! < i <k, then h C{e\,..., ek} ■< C{e[,..., e'k} : r. 

Proof By repeated application of Corollary 3.30 and transitivity of ;<    D 

Corollary 3.32 (Experimental equivalence is a congruence relation) 
If h e\ fa e\ : T\ ..., h ek ~ e'k : rk and C{_i,...,-k} G CtxT with _j of type 

Ti, for all 1 <i < k, then h C{e\,... ,ek} « C{e[,... ,e'k} : r. 
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Proof Follows immediately by Lemma 3.31. □ 

Before embarking on the theorem from which it follows that a fix-term 
is the least upper bound of its finite unrollings (Theorem 3.36), the proof of 
which will make use of context monotonicity, we shall first make another use 
of context monotonicity. We shall show that experimental approximation 
can be used to give an alternative characterization of the usual definition 
of contextual equivalence — via this alternative characterization, the proof 
principles for establishing experimental equivalence that are developed in 
this paper can be used also to establish results of contextual equivalence. 
This theorem (Theorem 3.34) is reminiscent of the CIU Theorem of Mason, 
Smith and Talcott [11]. 

Definition 3.33 (Contextual Approximation and Equivalence)   IfV h 
e : T and F \- e' : T, we define 

he^ce':T     <{=►     VC{_T} € Ctxx : C{e} ^k C{e'} 
h e «

c e' : r     <*=»     VC{_T} € Ctxx : C{e} nk C{e'} 

Theorem 3.34 If T h e : r and T h e' : T, then  (- e ^c e' : r iff T h e ^ rtsiii o.o^   IJ L   re./   unu, x   i    c   .  / ,  wie»   >    ^ _' 

T. 

Proof 
=> Assume \- e <c e' : r Further assume h 7 ^ 7' : T and that 

E{y(e)} (->* *. We are to show that #{7'(e')} t-»* *. Assume that 
Dom(r) = {xi,...,xn} and let n = T(xi). Without loss of generality 
(by the definition of value substitution and by considering the following 
part of the proof) we may assume that 7(2^) € ValTi and 7'(a;*) € ValTi. Let 
Vi = "y(xi) and v\ = "i'{xi), for all 1 < i < n. Let 

C{_T} = Xxi-.Ti.--- \xn\Tn.E{-T}vi ■Vr, 

Then C{e} i-)-*  *.    Hence by the assumption that    h e ^c e' : r, also 
C{e'} ^* *. Let 

C"{_T1,... ,-Tn} = Arci:ri.- • • Aa;„:r„.£;{e'} _T1 • • • -Tn 

Then we have that C'{vi,... ,vn} H-»* *. By Lemma 3.31, 

\rC'{v1,...,vn}±C'{v'1,...,v'n}:l 

Hence it follows that C'{v[,...,v'n} i->* *, and thus E{-y'(e')} H>* *, as 
required. 
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<^=    Assume T h e ^ e' : r. Then, by Lemma 3.29,  h C{e} ^ C{e'} : 1. 
Erom this it follows (with E = _i) that C{e} -<k C{e'}, as required. D 

Corollary 3.35 If Y \- e : T and V h e' : T, then    h e PZ
C
 e' : T iff 

rhewe':r. 

Proof Immediate from Theorem 3.34. D 

Theorem 3.36 For all C{p} G CtxT, the following three propositions are 
equivalent. 

1. \-C{Fa}±e:T 

2. 31 G Vc0f{N\P\) :Vm£/:      h C{FA} <e:r 

3. VJ G Vcoi(N\P\) :Vm£l:      h C{FA} < e : T 

Proof We show that 1 is equivalent to 2 and that 1 is equivalent to 3 from 
which the theorem follows. 

1 =» 2: Let I = {in G iVlPl | m\ = rri2 = ••• = migi }. J is clearly 
cofinal. By Lemmas 3.31 and 3.23 we get Vm G / : I- C{Fm} ^ C{Fa} : r 
so by transitivity the desired follows. 

2 =>■ 1:      Let E{-T} G ECtxi be arbitrary. We are to show that 

E{C{Fa}} ±k E{e} 

So assume E{C{FS}} \-t* *. Then by Lemma 3.22, there exists a V{p} 
such that V-TPb} = * and 

£;{C}{p}^FT/{p'} (24) 

Clearly, V = *. By the assumption that / G VC0{(N^) and (24) we get that 

/' = {me/| £{C}{FÄ}^**} 

is a cofinal subset of JVlPl. Hence /' is in particular non-empty, i.e., there 
exists me/' such that £{C}{FÄ} ■-►* *. Now, £{C}{FÄ} = E{C{FA}} 
so we have 3m G /' : £?{C{i^}} >-»* *. Finally, since /' is a subset of / we 
get by the assumption 2 that E{e} H->* *, as required. 

1 => 3: Let / G PcoK-W'P') be arbitrary. The required follows by 
Lemmas 3.31 and 3.23 and transitivity, (as in 1 =4> 2 above). 
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3 =>■ 1: Easy, since clearly 3 =» 2 and we have already shown 2 =^ 1 
above. 0 

Corollary 3.37 (Context Continuity) For all C{p} e CtxT, 

\-C{Fz}±e:T <=^ VnGTV:      h C{Fn,... ,Fn} X e : r 

Proof Follows by Theorem 3.36. □ 

Let C{p} = -Tl--T2 in Corollary 3.37. Then the corollary together with 
Lemma 3.23 intuitively says that Fw is the least upper bound of the chain 
of its finite unrollings: By Lemma 3.23, 

F0 r< Fi < F2 ± ■ ■ ■ 

is a chain with upper bound Fw. By Corollary 3.37, if e is an upper bound 
of the same chain, then Fu < e, so Fw is a least upper bound of the chain: 

FU} = \J{F0,F1,F2,...} 

Furthermore, by Corollary 3.30, 

C{F0}^C{F1}^C{F2}^--- 

is again a chain with upper bound C{FW}, and by Corollary 3.37, if e is an 
upper bound of the same chain, then C{FW} < e, so C{FU} is a least upper 
bound of the chain: 

C{FU} = LJ{ ^{^o}, C{F1), C{F2},...} 

In other words, to fill a context is a continuous operation for chains of finite 
unrollings of fix terms with respect to the approximation order. 

As explained by Mason, Smith, and Talcott [11] arbitrary chains of terms 
do not always have a least upper bound. This leads Mason, Smith, and 
Talcott to develop a notion of ordering between sets of terms, for which 
arbitrary chains do have a least upper bound, [11, Lemma 4.31]. Here, 
however, we shall only ever consider chains of the form 

C{F0}^C{F1}^C{F2}^--- 

for some given closed fix-term F and thus the chains, which we shall consider, 
will always have a least upper bound. Hence we do not need to develop 
more complicated notions of approximation ä la the set ordering developed 
by Mason, Smith, and Talcott [11]. 
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3.2    Syntactic Projections 

In this section we introduce syntactic projection terms which are the syn- 
tactic counterpart of the semantic projection functions known from domain 
theory. These syntactic projections will be used in the construction of the 
desired relations in Section 5. 

Let 7T be a variable. For all types T, we define terms nr : r —*■ r (given 
7T : p -*■ p) by induction on r as follows. 

up = Xx:p.irx 

rio = Xx:0.x 

IIi = Xx:l.x 

nrixT2 = XX-.TI x T2.(IITl (fst x),UT2 (snd x)) 

nri+T2 = \X:TI+T2.case(x,\x:Ti.'m\T2 (IlTlx),\x:T2-'\nrTl (UT2x)) 

nT1^T2   =   W:n -*■ T2.\X:TI.UT2 (/ (nT1 x)) 

Note that -K is possibly free in these so defined terms. Further, define terms 
nl : p —^ p, for all i > 0, by induction on i as follows. 

■K      =    fix Tr(x:p).TTX 

iri+1    =    Aa;:p.[7rV7r]in(nTp(outa;)) 

and define 
7r°° = fix ir(x:p).\n (UTf) (out x)) : p -*• p 

Observe that irl and also TT°° are values. 
Note that the 7rl's are the finite unrollings of the fix-term ir°° so, as 

explained in the previous subsection, 7r°° is the least upper bound of the 
chain of 7rl's. The 7r°° term corresponds to the least fixed point üx(S) of the 
continuous function 6(e) = iF(e,e)i^1 in [17, Definition 3.2]. We shall show 
that 7r°° is experimentally equivalent to the identity function (more precisely, 
the term Xx:p.x); this corresponds to the minimal invariant property in [17, 
Definition 3.2]. 

Example Assume TP = 1 + p. Intuitively, our recursive type then corre- 
sponds to the type of natural numbers. Then ir°° is equal to 

fix ir(x:p).\r\ ((Xx:l + p.case(x,Xx:l.\n\p ((Xx:l.x) x),Xx:p.\nri {{Xx:p.irx) x))) (out x)) 

Intuitively, it is clear that this is equivalent to the identify function. D 
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For all T and all i > 0, we define 

nj. d= [7rV7r]nT :T^T 

Finally, for all r, we define 

noo def ^oo/^^ . T _± T 

The following Lemmas 3.38-3.41 express that the above definitions do 
indeed define terms. 

Lemma 3.38 For all T, [IT : p -*■ p] h IIr : r -*• r. 

Proof By induction on r. D 

Lemma 3.39 h TT°° : p -± p. 

Proof By Lemma 3.38 and strengthening lemma for typing. D 

Lemma 3.40 For all T, h II~ : r -^ r. 

Proof By Lemmas 3.38 and 3.39 and substitution for typing. D 

Lemma 3.41 For all r, for all i > 0, h Ii\ : r —»■ r; and for all i > 0, 
h -K1 : p —*■ p. 

Proof Simultaneously by induction on (i, r) ordered lexicographically.    D 

We aim to show that 7r°° is operationally equivalent to the identity func- 
tion Xx:p.x. To this end we need a series of simple lemmas which we now 
proceed to establish . 

Lemma 3.42   // hew*:l then 

1. For alli>0,   h U\ e « * : 1. 

2. hnfe«*:l 

Lemma 3.43 //he« («1,^2) : T\ X T%, then 

1. For all t > 0,   h 11^ XT2 e » (11^ «i, 11^ v2) : n x r2. 

26 



2. h n~XT2 e« (n~ vi,n~«2): n x r2. 

Proof We show 1; 2 is similar. Let i > 0 be arbitrary. Assume he« 
(i>i,v2) : Ti x 7"2- Then by Lemma 3.5, e JJ-, i.e., there exists a v such that 
e i->* v. By Canonical Forms Lemma (Lemma 2.11), v — (v[,v'2) for some 
v[ and v2. Hence 

ntlXT2 e = (AS:TI X r2.(nt1 (fst x),42 (snd x))) (e) ^* (11^ «i,^ t;2) 

Thus by Lemma 3.7 h n^lXT2e « (n^ «i,IT;2 v2) : n x r2 and hew 
(w^,^) : Ti x T2- By transitivity of «, we get have h («1,^2) ~ (^'D^) 

: 

T\ x T2- By Lemma 3.9 it then follows that h v\ ~ v^ : TI and h 
V2 ~ «2 : T2- Hence it follows, by composition of evaluation contexts, that 
h n^ v\ « n^ ^ : TI and h n^2 v2 ~ n^ v2 : T2. Hence, by Lemma 3.9, 
h ITT1XT2 (e) « (n^ ui, n^.2 v2) : n x r2, as required. D 

Lemma 3.44 

i. //hex inlT2 v : Ti + T2, £/&en 

(aj For all i>0,   h n5-1+T2 e s=s inlT2 (H^ v) : TI + r2. 

f&j   hn-+T2e«inlT2(n5>):T1+T2. 

Ü. //he« inrTl u : TI + T2, then 

(a) For all % > 0,  h n^+r2 e sa inrTl (11^ v) : n + r2. 

W   hn~+T2e«inrT1(n~?;):T1 + T2. 

Lemma 3.45 // H e « u : Ti -^ T2, f/ien 

i. For a//1 > 0,   h 11«^^ e « Axin.II^ (u (n^ x)) : n -*■ r2. 

5.   h n~^T2 e w Az:ri.n~ (t; (H£ a;)) : n -* r2. 

Proof   We show 1, 2 is similar.  Let i > 0 be arbitrary.   Assume   he» 
u : TI —^ T2. Then by Lemmas 3.5, 3.7, and 3.8, there exists a v' such that 
e H->* u' and h v « «' : TI —^ T2. Hence, 

H^T2 (e) H+* irn^ (v') ^* Xx-.n.U^ (v' (% (x))) 

so by Lemma 3.7 

h nt^r2 (e) « Xx-.n.n^ («' (nj, (*))): n - r2 
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We now claim that 

h Xx-.n.U^ (v (I4 (x))) « Xx:n.Ui2 (v' (U^ (x))) : n ^ r2 (25) 

from which the required follows by transitivity. By Corollary 3.14, to show 
the claim (25), it suffices to show that 

h Xx:Tl.Ui2 (v (lit, (x))) (vx) » \X:TX.K2 (V
1
 (ffTl (x))) M : r2        (26) 

where «i 6 ValTl is arbitrary. Clearly, the left hand side in (26) is oper- 
ationally equivalent to WT2 (v (IT^ (vi))) and the right hand side is opera- 
tionally equivalent to H\2 (v' (Ul

Tl («i))), but these two expressions are op- 
erationally equivalent because v and v' are operationally equivalent and by 
composition of evaluation contexts (with the context WT2 (-ri^r2 (n^ (ui))))- 
Hence, by transitivity, the desired (26) follows. D 

Lemma 3.46 // h e « in v : p, then Yl°p e f|\ 

Lemma 3.47 If \- e « in « : p, then 

1. For alii > I,   h^ea in (U^1 v) : p. 

2. hn~e«in (11?°«) : p. 

Lemma 3.48 // h e « in « : p, then 

1. For alii > 1,   h TT* e « in (Ü^T1 u) : p. 

£   h 7r°° e « in (n~ u) : p. 

Lemma 3.49 For all T and for all i>0,  \~ Ul
T ^ \X:T.X :T-^T. 

Proof By Lemma 3.6 and Corollary 3.14 it suffices to show, for all r, for 
all v G ValT, for all E{-T-±T v} 

E{T?T v} ^k E{v} (27) 

We show this by induction on (i, T) ordered lexicographically. We proceed 
by cases on T. 

Case T = 1: Follows by Lemma 3.42. 
Case T = 0: Vacously true since Valo = 0. 
Case T — p: We consider two cases, i = 0 and i > 0. 
SubCase i — 0: Follows trivially by Lemma 3.46. 
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SubCase i > 0: By Canonical Forms Lemma(Lemma 2.11), v = in v' for 
some v' 6 ValTp. Assume E{U.lTm v'} H->* *. Then by Lemma 3.47 (with 
e = in v1 and using reflexivity of « and noting that % > 0 by assumption) 
we also have that E{\n (n^r1 v')} H^* *. Note that i - 1 > 0 as i > 0 by 
assumption and that (i — 1,TP) < (J,T) in the lexicographical order, so we 
can apply induction to get E{\r\ v'} i-»* *, which is the required. 

Case T = T\ x T2'. Follows by Lemma 3.43 and induction on (i,Ti) and 
ihT2). 

Case T — T\ + T2'- Follows by Lemma 3.44 and induction on {i,T\) or 
(i,T2) depending on whether v = inlT2 v' or v = inrTl v'. 

Case T = T\ -At2: Follows by Lemma 3.45 and Corollary 3.14, induc- 
tion on (i,T\) and induction on (i, T2). D 

We are now in a position to show one half of the operational equivalence 
of 7r°° and the identity function, namely that TT°° approximates the identity 
function. 

Lemma 3.50   h 7r°° ^ Xx:p.x : p —*■ p 

Proof By Corollary 3.37, it suffices to show 

V» € N :      \~ -K
{
 < \x:p.x : p ->> p (28) 

We show this by induction on i. 
Basis (i = 0): By Lemma 3.6, Corollary 3.14 and Canonical Forms 

Lemma (Lemma 2.11), it suffices to show, for all E{-p (in v)} £ ECtxi and 
all v 6 ValT/3, 

E{TT° (in v)} ^k E{m v} 

Recalling that 7r° = fix 7r(x:p).Trx the required follows immediately. 
Inductive Step: We assume (28) holds for i and show for i + 1. By 

Lemma 3.6, Corollary 3.14 and Canonical Forms Lemma (Lemma 2.11), it 
suffices to show, for all E{-p (in v)} E ECtxi and all v G ValT/3, 

E{ni+1 (in v)} ±k E{m v} 

To this end, assume 
E{TTi+1 (in v)} ^* * (29) 

Then by Lemma 3.47 (with e = in v and using reflexivity of w and noting 
that i + l>lasi>0by the assumption that i G N) we also have that 

£{in(nt„ «)}->** (30) 
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Then by Lemma 3.49, also E{\n v} >-¥* *, as required. D 

Next we aim to show the other half of the operational equivalence of 
7r°° and the identity function, that is, that the identity function opera- 
tionally approximates 7r°°. We shall employ an idea of Mason, Smith, and 
Talcott [11]. 

We now proceed to show idempotency of n^° and ir°°. The strategy is 
to show lemmas for 115- and ft1 and then use compactness of evaluation to 
get the desired results. 

Lemma 3.51 For all i > 0 and for all T,  hn^ XX:T.U^ (II?0 X):T^T. 

Proof  By Corollary 3.14 it suffices to show, for all % > 0, for all v E ValT, 
and for all E{.T^rv) E ECtxi, 

E{Ui v} ^k E{(\X:T.T1™ (n~ x))v} 

This can shown by induction on (i, r) ordered lexicographically. D 

Lemma 3.52 For all i > 0,   h 7r* r< \x:p.-K°° (TT
00

 X) : p -^ p. 

Proof Follows by Lemma 3.51. D 

Lemma 3.53 For all i > 0 and for all T,  h \X:T.WT {WT X) ■< n~ : T -»■ r. 

Proof By Corollary 3.14 it suffices to show, for all i > 0, for all v E ValT, 
and for all E{.T^Tv] E ECtxi, 

E{(XX:T.ITT {Ui x)) v} <k E{W? v} 

This can shown by induction on (i, r) ordered lexicographically. D 

Lemma 3.54 For all i>0,\~ Xx:p.nl (TT
1
 X) ■< 7r°° : p —^ p. 

Proof  Follows by Lemma 3.53. □ 

Lemma 3.55 For all T,   h ITf ^ \X:T.II™ (Ilf X):T^T. 

Proof By Corollary 3.37, with C = -T-+T, and Lemma 3.51. D 
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Lemma 3.56   h -K°° ■< Xx-.p.n™ (TT
00

 X) : p -»■ p. 

Proof By Corollary 3.37, with C = -p^p, and Lemma 3.52. □ 

Lemma 3.57 For all r,  h \X:T.T[? (ILf x)±Il™ :T^T. 

Proof   By Corollary 3.37, with C = \x:p.-\ (_2 x) with _i and _2 of type 
T -^ T, and Lemma 3.53. D 

Lemma 3.58   h Xx:p.ir°° (TT
00

 x) ■< TT
00
 : p -»■ p. 

Proof   By Corollary 3.37, with C = Xx:p.-\ (_2 x) with _i and _2 of type 
p —*■ p, and Lemma 3.54. D 

Corollary 3.59 For alle G ExpT and for allE{^T} € ECtxT,, h E{W? (II?0 e)} 
E{n~ e} : r'. 

Proof Follows by Lemmas 3.55 and 3.57. D 

Corollary 3.60 For alle G Expp and for allE{.p} e ECtxr, h E{7r°° (TT
00

 e)} 
E{n°° e} : r. 

Proof Follows by Lemmas 3.56 and 3.58. D 

We then define a "compilation" relation for expressions that annotates 
terms with syntactic projections. The relation T h e : r =» |e| is defined by 
induction on F \- e : r by the axioms and inference rules in Figure 2. It is 
easy to see that if V h e : r, then T h e : T => |e|, for some |e|. 

Lemma 3.61 IfT\-e:r=^ \e\, then T h |e| : r. 

Proof By induction on T h e : r => |e|. D 

For any -B{-T} € ECtxT', we define |.E| as follows. Clearly, [z : T] h 
E{z} : T'.   Thus for some e', [2 : r] h -E{z} : T' =£> e'.   By induction on 

the derivation there will be one free occurrence of z in e'. We define \E\ = 
[_T/z]e', and by the remarks given here and Lemma 3.61, |.E|{_T} G ECtxT/. 

Lemma 3.62 For all e G ExpT(F) and for all expression substitutions 7 for 
T, ifT\-e-.T => \e\, then h II~ (-yje|) ~ l\e\ ■ r. 
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r I- x : r =» n^° re    (r(ar) = r) (TR-VAR) 

r h *: i => nf * (TR-ONE) 

r h ei : T\ => |ei|        r h e2 : T2 => ]e2[ 

n-(ei,e2) :ri x r2 =*• n~XT2 (|ei|, |e2|) 

The T\ X T2 =*► e| 

n-fct e : T\ => fst |e| 

The n X T2 => e| 

T h snd e : r2 => snd |e| 

T h e : ri =>• |e| 

T h inlT2 e : rx + r2 => n^+T2 (inlT2 |e| 

T h e : r2 =4> |e| 

(TR-PROD) 

(TR-FST) 

(TR-SND) 

(TR-INL) 

(TR-INR) 
r h inrTl e : Ti + T2 =» n^+T2 (inrri |e|) 

r h ei : ri + r2 =>■ |ei|        r h e2 : n -*■ r =>■ |e2|        r h 03 : r2 —^ r =>■ |e3| 

T hcase(ei,e2,e3) : r =» case(|ei|, |e2|, |e3|) 
(TR-CASE) 

 r[/ : TI ->• T2][X : ri] h e : r2 => |e|  

T H fix /(a::Ti).e : n -- r2 =* n~^T2 (fix /(x:n).|e| 

r h ei : r2 —*■ r =>• |ex j        T H e2 : T2 =^ |e2| 

r I- e\ e2 : r =£- |ei| |e2| 

T h e : p=» |e| 

T h out e : rp =» out |e| 

T h e : Tp =>• |e| 

rhine:p^n~(in |e|) 

Figure 2: Definition of T h e : r => |e| 
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(TR-FIX) 

(TR-APP) 

(TR-OUT) 

(TR-IN) 



Proof By induction on T \- e : r => |e|. 
Case TR-VAR, TR-ONE, TR-PROD, TR-INL, TR-INR, TR-FIX, TR-IN:  Use 

Corollary 3.59. 
Case TR-FST: By induction we get that 

h7|e|«n~XT2(7|e|):T1XT2 (31) 

We are to show I- fst (-yjej) « II~ (fst (7|e|)) : n X T2. If 7|e| ff then 
it follows by Lemma 2.15. Thus assume that -y|e[ JJ-, that is, that there 
exists v G ValriXT2 such that 7|e| i-)-* u. By Canonical Forms Lemma 
(Lemma 2.11), v = («1,^2) for some «i, w2. By (31), Lemmas 3.7 and 3.43 
and transitivity of «, 

h7|e|^(ri?>,IL>2):T1XT2 (32) 

By Lemmas 3.7, 3.8, 3.9, and (32), we get 

r-fct(7|e|)«n~«i:Ti (33) 

Further, again using Lemmas 3.7 and 3.9, 

h fst (7|e|) « «i : n (34) 

so by composition of evaluation contexts, (34) gives 

hn£(fst(7|e|))«n~«i:ri (35) 

which together with (33) gives the required by transitivity and symmetry of 

Case TR-SND: Similar to the case for TR-FST. 

Case TR-CASE: We are to show that t- IL?3 (case('yjei|,'y|e2|,'yle3l)) ~ 
case(7|ei|,7|e2|,7|e3|) : r. If -y|e| -ft then it follows by Lemma 2.15. Thus 
assume that -y|e| -IL 

SubCase I: Assume 7|e| i-»-* inlT2 v\. Then by Lemma 3.7, it suffices to 
show h n^° (7|e2| {v\)) ~ 7|e2| (vi) '■ T- Assume 7|e2| >-»* v (otherwise the 
required follows by Lemma 2.15). By induction we have 

h-7|e2|^n^T(7|e2|):T1-r 

so by Lemma 3.7 and transitivity of RJ we get 
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Thus it suffices to show 

hII?((Il^Tv)v1)K(n^Tv)v1:T 

But 

so by Lemma 3.7 and transitivity of « it suffices to show 

h n- (n~ (v (n~ «!))) « n- („(n~ Vl)): r 

but this follows from Corollary 3.59. 
SubCase II: Assume j\e\ i->* inrTl «i. Similar to SubCase I. 
Case TR-APP: Follows by induction and Corollary 3.59. 
Case TR-OUT: Follows by induction and Corollary 3.59. D 

Lemma 3.63 For all e E ExpT(T) and for all expression substitutions 7, 7' 
for r, i/ h 7 ^ 7' : T and rhe:r=> \e\, then  h j\e\ ^ 7'(e) : r. 

Proof By induction on V h e : r =4- |e|, using Lemma 3.31 and Lemma 3.50. 
For rule TR-FIX, by compactness it suffices to show, for all i E N, 

h 7(fix rixmUel) =< 7'(fix r(^:ri).(e)) : r 

This is shown by induction on i using the outer induction hypothesis in the 
inductive step. D 

Corollary 3.64 7/0 h e : r => |e|, i/ien  h- |e| -< e : r. 

Proof By Lemma 3.63. D 

Corollary 3.65 For all E{„T} E ECtxTi and for all expression substitutions 
jforT = [z: r], i/[« : r] h- E{z} => |£{«}|, iÄen h 7|£{-*}| =< 7(^}) : T'. 

Proof Follows by Lemma 3.63. D 

Lemma 3.66 For all e E ExpT and for all E{^T} E ECtxT> 

1. If [x\ : Ti,... ,xk : Tk] \~ e => \e\ and 0 h ei : TI, ..., 0 h e^ : r^, £/ien 

h |[ei,...,efc/a;i,...,a;fc]e| « [jex |,..., \ek\/xi,... ,xk]\e\ : r 
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2.   ^\E{e}\*\E\{\e\}:r>. 

Proof 

1. By induction on [x\ : T\, ..., Xk : r^] H e =£• |e|. 

2. 

|£{e}|    =    |[e/a;]£{:r}| by Lemma 2.3 
=    [lel/zpMI        byl 
=    \E\{\e\} by Lemma 2.3 

where for the last application of Lemma 2.3 note that the lemma indeed 
is applicable since \E\ is an evaluation context by the remarks on 
Page 31. 

D 

Lemma 3.67 For all r and for all v G ValT the following holds. 

1. \v\$ 

2. n?° \v\ \ 

Proof By induction on«. D 

Lemma 3.68 For all e E ExpT,  if 0 h e  : r =>  |e|  and e i->- e',  then 
\- \e\ « |e'| : r, where 0 h e' : r => |e'| 

Proof Assume e i-> e'. Then e = E{r} for some £7 and r. We proceed 
by cases on the reduction rule applied. We will use Lemmas 3.7 and 3.8 
repeatedly without explicit mentioning. 

Case R-OUT: Then r = out (in v) for some v. We reason as follows. 

|e|    = \E{r}\ 
« |I?|{|r|} by Lemma 3.66, item 2 
= |#|{|out (in v)|} 
= \E\{out (n~ (in H))}       by definition 

|E|{out (Uf (in v'))}        by Lemma 3.67, 3v' : |v| ^* v 
\E\{out (in (n~ «'))}        by Lemmas 3.31 and 3.47 
|£|{out(in(IT~M))} 

ip 

\E\{out (in v")} by Lemma 3.67, 3v" : n?° |«| ^* v" 
\E\{v"} by R-OUT 
|£|{n?>|} 
\E\{\v\} by Lemma 3.62 
le'l 
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by Lemma 3.67, 3v' : \v\ H->* v' 

by R-BETA 

by Lemma 3.62 

by R-BETA 
by Lemma 3.31 
by Lemma 3.62 
by Lemma 3.66, item 1 
by Lemma 3.66, item 2 

Case R-BETA: We reason as follows. 

|    « |E|{|(fix/(a;:Ti).ei)v|} by Lemma 3.66, item 2 
« |£|{(n^r2(fix/(z:Ti).|ei|))M} by definition 
« |£?|{(Aa::ri.n~((fix/(a;:T1).|ei|)(n~a;)))|«|} by Lemma 3.45 
« |^|{(Aa;:r1.II^((fix/(a::r1).|ei|)(n~a:)))t;'} 

« |^|{n~ ((fix /(^rO.lexl) (n^> b|))} 
« ^^((fix/^rO-leiDI^)} 
« ^^((fix/^rO.leiDt;')} 
« I^Kn« ([fix /(a::Ti).|ci|,t;V/,x]|ei|)} 
« |£|{n£([fix/(z:T1).|e1|>|//,z]|ei|)} 
« |£?|{[fix/(a::ri).|ei|,|t;|//,a;]|ei|} 
» |£?Kf[fix /(ariT-O-ex,«//,^!]} 

~ le'l 
Case R-FST: We reason as follows. 

|    « |E|{|fet((üi,U2))|} by Lemma 3.66, item 2 
« |£|{fst ((M,|v2|))} by definition 
« |£|{fst ((v[,v'2))} by Lemma 3.67, 3^i : |vi| i->* «i and 3u2 : H l~>* «2 
« |i?|{t>i} by R-FST 

*  I^Khl} 
a    |e'| by Lemma 3.66, item 2 

Case R-SND: Similar to the R-FST case. 
Case R-CASE-INL: We reason as follows. 

e|    « |jK|{|case(inlT2 u,ei,e2)|} by Lemma 3.66, item 2 
« |JB|{case(inlT2 |v|, |ei|, |e2|)}       by definition 
a |i?|{case(inlr2 v', |ei|, |e21)} by Lemma 3.67, 3u' : |u| >->•* v' 
« |£?j{|ei|v'} by R-CASE-INL 
a |JE|{|ei|M} 
a |£?|{|eiv|} by definition 
« |e'| by Lemma 3.66, item 2 

Case R-CASE-INR: Similar to the R-CASE-INL case. D 

Lemma 3.69   h Xx:p.x ^ ir°° : p —*■ p 

Proof   By Corollary 3.14 and Canonical Forms Lemma (Lemma 2.11) it 
suffices to show, for all E{-p^p (in v)} 6 ECtxi, 

E{\x:p.x (in «)} ^fc £{7r°° (in v)} 
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Let E{^p-±p (in v)} G ECtxi be arbitrary. By Lemma 3.6, it then suffices to 
show, 

E{m v} ^k E{-n°° (in v)} 

By Corollary 3.64 it then suffices to show, 

E{\n v} <k E{-K™ |in v\} 

Since clearly h 7r°° « n^° : p —*■ p, by Lemma 3.62 it then suffices to show, 

£{in v} dik E{\m v\} (36) 

Suppose that 

£{in v} <k \E{\n v}\ (37) 

holds. Assuming this, we can reason as follows 

E{\rt v} !->■* *   =>    |i£{in v}| H>* * by assumption (37) 
=>    |£7|{|in u|} >->■* *       by Lemma 3.66, item 2 
=>   E{|in u|} i->* * by Corollary 3.65 

which gives (36) as required. 
Thus we are left with showing (37). Clearly this follows from showing, 

for all closed expressions e G Exp1; 

e i—>* * =£■ |e| H-»* * 

We show this by induction on the length m of the computation of e i-»* *. 
Basis (m = 0):      Then e = *, whence |e| = nf3 * i->* *, as required. 
Inductive Step: Assume me' *->m *. Then by induction we get that 

|e'| i->* *. By Lemma 3.68, also |e| >-»* *, as required. D 

We are now in a position to establish the following theorem, which we re- 
fer to as the syntactic minimal invariant property by analogy to the domain- 
theoretic work of Pitts [17]. 

Theorem 3.70 (Syntactic Minimal Invariance)   h 7r°° « Xx:p.x : p —*• p 

Proof By Lemmas 3.50, 3.69, and 3.3. D 

37 



3.3    Summary 

In this section we have defined a notion of experimental approximation and 
experimental equivalence between terms and established some basic equiv- 
alences of terms. Further, we have seen that the finite unrollings of a given 
fix-term forms a chain with respect to the approximation pre-order and that 
the fix-term itself is the least upper bound of this chain. This has been cru- 
cial to establish the syntactical minimal invariant property for the recursive 
type p, that is, that the projection term 7r°° associated with the recursive 
type p is operationally equivalent to the identity term Xx-.p.x. 

In the following we shall show how to construct relations over equivalence 
classes of terms (with respect to the operational equivalence). The properties 
established in this section are crucial to this construction, in particular, the 
syntactial minimal invariant property plays a central role in adapting Pitts' 
method [17] to our operational setting. 

4    Relations 

In this and the following section we shall show how to construct a relational 
interpretation of types over an operational semantics. We shall end up by 
showing "The Fundamental Theorem of Logical Relations" which states that 
the relational interpretation of types is sound in the sense that well-typed 
terms are related to themselves by the relation associated to their type. The 
constructed relations can be seen to provide a notion of equality of terms, 
which we shall refer to as "logical equivalence". In Section 6 we define this 
notion of equivalence and show that it coincides with contextual equivalence. 
Moreover, we derive a useful coinduction principle for establishing logical 
equivalence and thus contextual equivalence. This section also provides the 
necessary understanding for constructing a relational interpretation, which 
we can use to show the correctness of cps transformation in Section 7. 

In this section we define a universe of relations over equivalence classes 
of closed expressions, with respect to operational equivalence. Further, we 
define a notion of admissibility for relations. This corresponds to the notion 
of admissibility (also known as inclusiveness or completeness) used in domain 
theory, and is also here used as a condition on relations, which, loosely 
speaking, allows one to show that a fix-term is in a relation by showing that 
its approximants are in the relation. Next we show that admissible relations 
equipped with the obvious ordering form a complete lattice, define relational 
constructors corresponding to the type constructors of the language, and 
show that these constructors preserve admissibility. 
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Throughout this section we will let n G N be an arbitrary but fixed 
natural number, that is, we will consider n-ary relations for a fixed, but 
arbitrary n G N. We will use the same abbreviations for terms involving 
fix and for contexts as in Section 3.1. For any set A and natural number m 
we write Am for the m-ary cartesian product of A. For any set A and any 
equivalence relation = on A, we write A /= for the set of equivalence classes 
of A with respect to =. To simplify notation we denote each equivalence 
class by one of its representatives. Moreover, we will simply use « for the 
operational equivalence relation at type r (i.e., (e, e') G~ <=> h e K e': T) 

when r is clear from context. 

Definition 4.1 For all T, we define a universe of n-ary relations RelT as 
follows. 

RelT 
d=lf V ((ExpT /«)") 

We use R to range over RelT. 

Definition 4.2 A relation R G RelT is admissible if and only if it satisfies 
both of the following two conditions. 

Strictness:  (ei,..., en) G R if and only if ((Vi G l..n : ej ff) V (V? G l..n : 
3vt : ei i-)-* Vi A (vu ... ,vn) G R)) 

Completeness: For all i G l..n and for all Ci{p} G CtxT with all param- 
eters in p of type T\ —*■ T2 and for all F^ = fix f{x\Ti).ei G ExpT1^T2, 

andforallIeVcoi(N\P\), 

{Vmel: (^{Fl},..., Cn{F£}) G R) =* 

((Ci{i^},...,Cn{i^})Gi2) 

Recall that C{p} means that all of the parameters of C are included in p, 
that is, in the completeness condition the contexts C, are not required to all 
have the same number of parameters. 

The completeness condition on relations is motivated as follows. For 
simplicity, let us just consider unary relations (n = 1). We wish to impose 
a completeness property that allows us to conclude that C{FU} G R based 
on whether some collection of finite unrollings of C{FW} are in R. Clearly, 
it is not sufficient to establish that C{Fi} G R for some i > 0, since C{Fi} 
may fail to terminate (and hence lie in R by the strictness condition on 
relations), whereas C{FW} may terminate with some value. This suggests 
that it may be sufficient to establish that C{Fi} G R for some i such that 
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C{Fj} terminates. But such a weak notion of completeness would not be 
closed under the formation of function spaces between relations. Knowing 
that C{Fi} terminates and that C{Fi} G i?i —*• i?2 does not entail that there 
exists %' such that C{Fi>}(e) terminates and lies in i22. Consequently we 
must assume that for every i there is a larger %' such that C{F{} G R so that 
in the case of R = R\ —*■ R2 we may pick a large enough i' to ensure that an 
application C{Fii] (e) terminates and hence lies in R2. The completeness 
condition we have stated here ensures that this is the case. 

Definition 4.3 For all r, we define a universe of admissible n-ary relations 

RadmT as follows. 

RadmT = {R E RelT \ R is admissible} 

We also use R to range over RadmT. 

We now define a series of relational constructors corresponding to the 
syntactic type constructors. For each of these constructors it is easy to 
verify that the definition does not depend on the choice of representative of 
an operational equivalence class. 

Definition 4.4 

R0 ^ { (ex,..., en) 6 (Exp0 /»)" | V» G l..n : et ft } 

Definition 4.5 

Äi d= { (ei,.. •, en) G (ExPl /«)" | (Vi G l..n : e* ft) V (V* G l..n : e, ^* *) } 

Definition 4.6 For a// R\ G i?e/Tl and _R2 G RelT2, 

R1XR2    =    { (ei,..., en) G (ExpTl XT2 /«)n I 
(V* G l..n : ej ft)V 
(V« G l..n : 3üj, v[:  he;« (VJ, ^) : T\ X T2 

A (u!,..., u„) G fix A («i,..., v'n) G R2) } 

Definition 4.7 For all R\ G i?eZTl and i?2 G RelT2, 

Ri + R2    =    { (ei,..., en) G (fepTl+T2 /«)» I 
(Vi G l..n : ei ft)V 
(V« G l..n : 3uj :  h e* « inlT2 Uj : ri + r2 A (ui,..., vn) G R\) 
(Vi G l..n : 3uj :  h e; « inrTl Vi : n + r2 A (vi,..., vn) G i?2) } 
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Definition 4.8 For all R\ G Reln and R2 G Rel 

Ri -Ä2    =    { (ei,..., en) G (ExpTl^T2 /*)n \ 
(Vi G l..n : ej ff)V 
(Vi G l..n : 3vi :  h e; « Vi : n -± r2 A ((ei, ...,ej,)6i?i^ 

(uie'1,...,t;ne'n) GÄ2))} 

Lemma 4.9 For a// r, (RadmT, C) is a complete lattice. 

Proof By a standard lattice-theory theorem (see, e.g., [2, Theorem 2.16(ii)]) 
it suffices to show that the greatest lower bound, /\ S, exists for every subset 

of RadmT. Thus let S be an arbitrary subset of RadmT. Define /\S = f]S. 
We then have to show 

1. /\S G RadmT 

2. /\ S is the greatest lower bound of S 

Item 2 is obvious by the definitions. To prove item 1 we have to show that 
the two conditions in the definition of admissibility are satisfied. They both 
follow easily using the fact that each R G S is admissible. D 

We now proceed to show that the relational constructors preserve ad- 
missibility. To this end we shall employ the following lemma about the JJ-F 

relation, which was defined in Section 3.1. 

Lemma 4.10 For all i G l..n and for all contexts Cj{p} and all value 
contexts Vi{^} satisfying Ci{p} JJ-F V^jp^}, there exists a p' such that for all 
i G l..n, Ci{p} JJ-F Vi{p'} and furthermore, for all I G Pcof (-W'^')J letting 

Ii^imm' I m E I ACi{Fi} ^* Vi{Fi,}} eVcoi(NW+\P'\) 

then 
def 

i=l 

is a cofinal subset ofNW+\P\. 

Proof Since JJ-F 1S preserved under renaming of parameters we can as- 
sume without loss of generality that all parameters p^ are distinct. Let 
p' = p[ • • • pn. The result follows by Lemma 3.20 and simple properties of 
cofinal sets (it is the fact that each Vi involve a distinct subset of the param- 
eters of p' that ensures that the intersection defining I' indeed is a cofinal 
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set). □ 

We will also make use of the following lemma to show admissibility of 
the relational constructors. 

Lemma 4.11 For all i G l..n, all Ci{p], and for all R\ G RadmT1  and 
i?2 G RadmT2 if the following conditions are all satisfied 

1. R is either RQ, R\, R\ X R2, RI + R2, or R\ -^ R2 

2.VmelePcot(Nto): (Ctfift},...,Cn{F%}) e R 

3. each R is strict 

then 
(Vi G l..n : d{Fi} 1}.) V (Vi G l..n : d{F%} ft) 

Proof By contradiction using Lemma 3.22. D 

Lemma 4.12 For all R\  G  RadmTl   and all R2  G RadmT2, R\ x R2  G 

RadmnxT2- 

Proof We are to show that the two conditions of admissibility hold. 

Strictness Follows by Lemmas 3.5, 3.7. and 3.8. 

Completeness Let I G Vcof(N^). Assume 

Vmel: (C.iFl},...,Cn{F£}) G Rx x R2 (38) 

By Lemma 4.11 (note that we have already argued that the strictness 
condition of admissibility is satisfied) there are two cases to consider. 

Case I: Vi G l..n : Cj{Fl} ft. Then the desired follows by definition 
of Ri X i?2- 

Case II: Vi G l..n : a{F|} #• Then Vi G l..n : 3vt : Ci{Fi} H+* «,-. 
By Lemma 3.22, for all i G l..n there exists a 1^{p^} such that v% = 
Vj{Fi} and C;{p} $F ^{pj. Thus by Lemma 4.10, there exists a p' 
such that for all % G l..n, Cj{p} JJ-F ^{p"} and 

Ii^imm' I mG/Aa{^}^^fe}}e^cof(^|P|+|P'1) 
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and 
n 

Ti def /'Hfp|/i6Pcof(iVlPMP 

Let 
I" = {m! | me/Amm'G/'} 

Clearly, I" E PcofC^P'1). By (38), Lemma 3.7 and definition of I", we 
have, 

Vm E I" : (Vi{i^},..., Vn{F&}) E Rt x R2 (39) 

By Canonical Forms Lemma, for all % € l..n, there exist V^i, V%2 such 
that Vi = (Vn,Vi2), and by (39) and definition of R\ x i?2 we then 
have 

Vm € I" : (Fn{^},..., Kl{^}) G Äi (40) 

and 
Vm E J" : (F12{Fi },..., Vn2{F£}) E R2 (41) 

By admissibility of R\ and (40) we then get 

(Vu{F£},...,Vnl{F%})eR1 (42) 

and by admisibility of R2 and (41) we get 

(V12{Fi},...,Vn2{FS})£R2 (43) 

Hence, by definition of Ri x R2 we then have 

(V1{Fl},...,Vn{FS})eRlxR2 (44) 

which together with Lemma 3.7 (and recalling that the relations are 
over equivalence classes w.r.t. operational equivalence) gives that 

(C1{Fl},...,Cn{FS})GR1xR2 

as required. 

D 

Lemma 4.13 For all R\  E Radmn  and all R2 G RadmT2, R\ + R2 E 
RadmTl+T2. 

Proof We are to show that the two conditions of admissibility hold. 
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Strictness Follows by Lemmas 3.5, 3.7. and 3.8. 

Completeness Let 7 G Vcoi{N^). Assume 

Vm G 7 : (C^Fl},..., Cn{F&}) G Ri + R2 (45) 

By Lemma 4.11 (note that we have already argued that the strictness 
condition of admissibility is satisfied) there are two cases to consider. 

Case I: Vi G l..n : Ci{Fl} ff- Then the desired follows by definition 
ofR1+R2. 

Case II: Vi G l..n : C{{Fi} ty. Then Vi e l..n : 3^ : Ci{Fi) ^* Vi. 
By Lemma 3.22, for all i G l..n there exists a V^{p*J such that «j = 
Vi{Fl} and Cj{p} J|F Vi{pJ. Thus by Lemma 4.10, there exists a p' 
such that for all i G l..n, C;{p} JJ-F ^{p'} and 

/, = {™' | m G IAd{Fi} ^* ViiF^,}} EVcodN^+^'h   (46) 

and 
n 

7'd4ff]liGpcof(7VlPHP'l) 

Let 
def f  -,, I" = {rti | m G 7 A mm! G 7' } 

Clearly, I" G PCof(Ar|P'1). By (45), Lemma 3.7 and definition of 7", we 
have, 

Vm G 7" : (V^Fl},..., Vn{F£}) G R, + R2 (47) 

By Canonical Forms Lemma, 

Vi G l..n : ((3Vii : ^ = inlT2 Vix) V (3Fi2 : Vt = inrTl F<2)) 

Claim: 

(Vi G l..n : 3Vn : Vi = inlT2 Fa) V (Vi G l..n : 3Vi2 : V< = inln 7i2) 

Proof of Claim:      By contradiction (of the assumption (45)), using 
Lemma 3.7, and (46).  (End of Proof of Claim) 

Thus there are two subcases to consider. 

SubCase I: Vi G l..n : 3V^i : V£ = inlT2 V^.   Now proceed as in the 
proof of Lemma 4.12, using admissibility of R\. 

SubCase II: Vi G l..n : 3Vi2 : ^ = inlTl Vfo-   Now proceed as in the 
proof of Lemma 4.12, using admissibility of R2. 
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D 

Lemma 4.14 For all R\  G  RelTl  and all R2  G  RadmT2, R\  —*• R^  G (ri    u/tu   UM   J12    c    Jii™»tf2, 

Äadm 

Proof We are to show that the two conditions of admissibility hold. 

Strictness Follows by Lemmas 3.5, 3.7. and 3.8. 

Completeness Let I E VC0{(N^). Assume 

Vm G 7: (d{i^}, • • •, C„{f&}) ERi^R2 (48) 

By Lemma 4.11 (note that we have already argued that the strictness 
condition of admissibility is satisfied) there are two cases to consider. 

Case I: V« G l..n : Cj{Fi} f[\ Then the desired follows by definition 
of R1 -^R2. 

Case II: V» G l..n : Ci{F%} ty. Then Vt G l..n : 3u< : Ci{Fl} ^* vt. 
By Lemma 3.22, for all i G l..n there exists a V^{p^} such that Vi = 
Vi{Fi} and C,{p} 4F ^{pj. Thus by Lemma 4.10, there exists a p' 
such that for all i G l..n, Cj{p} JJ-F V^{p'} and 

7, = {mm'|m6/A d{F%} ^* Vi{Fi,} } G V^N®^)   (49) 

and 

/' = n^enof(ivlPHP'i) 
2 = 1 

Let 
I" = {m' | me/Amm'E/'} 

Clearly, 7" G PcofC/V'P'1)- By (48), Lemma 3.7 and definition oil", we 
have, 

Vm G 7" : (Vi{Fjj,..., Fn{f£}) G 7^ - i?2 (50) 

Hence by definition of R\ —*■ 7ü2 

Vm G 7" : V(ei,..., e'n) G 7?2 : (V^Fl} e[,..., Vn{F%} e'n) G i?2 

(51) 
Let (e'x,..., e'n) G i?i be arbitrary. Then by (51) we have 

Vm G 7" : (Vi{i^} e[,..., Vn{f£} ejj G i?2 (52) 
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whence by admissibility of R2, also 

(V1{Fl}e'1,...,Vn{F?}e'n)ER2 (53) 

Since (e[,..., e'n) was arbitrary and using Lemma 3.7 we have that 

(C1{F£,...,Cn{FS})eRi--R2 

as required. 

D 

Lemma 4.15 R\ G Radm\. 

Proof We are to show that the two conditions of admissibility hold. 

Strictness Follows by Lemmas 3.5, 3.7. and 3.8. 

Completeness Let 7 G Vcod
N^)- Assume 

Vm G 7 : (Ci{i&}, • • ■, Cn{F%}) G i?i (54) 

By Lemma 4.11 (note that we have already argued that the strictness 
condition of admissibility is satisfied) there are two cases to consider. 

Case I: \/i G l..n : Ci{Fi} -ft-. Then the desired follows by definition 
of Äjv. 

Case II: Vt G l..n : Ci{F%} i}-. Then Vt G l..n : Ci{F%} ^* *. By 
Lemma 3.22, for all % G l..n there exists a Vi{p{\ such that * = Vi{Fl} 
and Ci{p} tyF VilPi}. Thus by Lemma 4.10, there exists a p such that 
for all i G l..n, Ci{p} ^F ^{p'} and 

ii = {™' I mG/ACi{Fl}^^{F4,}}GPC0f(iVlPl+lP'l)   (55) 

and 

j'^n^GPcoKivipwp'i) 
2 = 1 

Let 
I" = { rti I m G 7 A mm' G 7' } 

Clearly, 7" G PcofC^P'1). Clearly, V* = *. Since 7" is cofinal, in 
particular it is non-empty, so by (54) we have (*,...,*) G R\. Whence, 
by Lemma 3.7 we have that 

{C1{Fl},...,Cn{F%})eR1 

as required. 
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D 

Lemma 4.16 RQ 6 RadrriQ. 

Proof Immediate by the definition of RQ and the fact that, for all e € Exp0, 
e ff; the latter follows from progress and the fact that there are no values of 
type 0 (formally, by Theorem 2.12 and Lemma 2.11). D 

5    Relational Interpretation 

In this section we give a relational interpretation of the types of C, that is, an 
assignment of admissible relations to each type. To interpret the different 
type constructors we, of course, make use of the corresponding relational 
constructors defined in the previous section. Our construction follows along 
the lines of Pitts [17]. 

Definition 5.1 For all T, define [r] : Radmp —> RadmT by induction on r 
as follows. 

[Op =   Ro 
[ip =  Ri 
\P\R =  R 
[nxrslfi   =   InjRxl^jR 
lri + T2jR    =   ln}R+fo]R 
ln^r2jR   =   ln}R^lT2jR 

Note that the operation [r] is well-defined by induction on r and Lem- 
mas 4.9-4.16. 

Definition 5.2 Define $ : Radmp —> Radmp by 

MR)   ^   {(ei,...,en)e(ExPp/^r I 
(Vi € l..n : e$ ff) V (Vi 6 l..n : 3u; : h e, « in Uj : p A 

(ui,...,«n)G[rp]Ä)} 

Lemma 5.3 $ is well-defined. 

Proof First note that the definition does not depend on the chosen equiv- 
alence class representatives (by Lemma 3.5 and transitivity of «). Let 
R € Radmp. We are to show that <E>(-R) is admissible. Use the fact that 
Jrpji? is admissible and proceed as in Lemma 4.12. D 
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Lemma 5.4 (Radmop xRadm) ordered componentwise is a complete lattice. 

Proof Follows by Lemma 4.9 □ 

Definition 5.5 For all T, define flr]' : (Relp
p x Radmp) —> RadmT by in- 

duction on T as follows. 

10]'(R-,R+) = Ro 
{I]'(R-,R+) = Rx 

M(R-,R+) = R+ 

IT1XT2}'(R-,R+) = lnY(R-,R+)x{T2Y(R-,R+) 
ln + T2f(R-,R+) = [T1Y(R-,R^) + M(R-,H+) 
lrx^T2Y(R-,R+) = ITIY(R+,R-)-*IT2]'(R-,R

+
) 

Note that the operation fr]' is well-defined by induction on r and Lem- 
mas 4.9-4.16. Moreover, note that the first argument to [r]' is not required 
to be admissible; this will be useful in the following section. 

Definition 5.6 Define \I> : (Radmop x Radmp) —> Radmp by 

V(R-,R+)    d^   {(ei,...,en)e(ExPpM
n I 

(Vi G l..n : eii[)V (Vz G l..n : 3vi :  h ej « in Uj : pA 
(«i,...,t;„)e[rPl'(iE-,Ä+))} 

Lemma 5.7 \I/ is well-defined. 

Proof As in the proof of 5.3. D 

Definition 5.8 Define ^ : (Radmop x Radmp) -» (Radmop x Radmp) as 
follows. 

^(R-,R+) = (■$(R+,R-),$(R-,R+)) 

Lemma 5.9 \[/§ is monotone. 

Proof   By induction on r using monotonicity properties of the relational 
constructors in the obvious way. D 

Definition 5.10 By Lemma 5.9 and 5.4 and Tarski's fixed point theorem, 

*§ has a least fixed point lfp(tt$). Define (A~,A+) d= lfp(#$). 
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Lemma 5.11 (A   , A+) satisfies the following properties 

1. A-,A+ G Radrrip 

2. A" = *(A+ A") 

3. A+ = *(A",A+) 

4. for all (R-,R+) G (Radm°p x Radmp), if <£>§{R-,R+) C (R~,R+) 
then R- C A- and R+ D A+ 

5. A+ C A- 

Proof Items 1-3 are obvious. Item 4 follows by the least fixed point prop- 
erty. Item 5 follows by letting R~ = A+ and R+ = A~ in 4. D 

To simplify notation, we write e : R C R' for 

V(ei,...,en) eR: (eel5... ,ee„) eR'. 

Note that this notation does not depend on the chosen equivalence class 
representative, so the notation is indeed well-defined. 

Lemma 5.12 For all i G N and for all T, 

nt:Ir]'(A+,A-)c[r]'(A-,A+) 

Proof   By induction on (i,r) ordered lexicographically.   We proceed by 
cases on r. 

Case T = 0: Follows immediately by |[0]'(A+, A~) - [0]'(A-, A+) = 
RQ and IIQ = \x:Q.x, for all i, and Lemma 3.6. 

Case T = 1: As the previous case. 
Case T = p: Then [TJ'(A+ A~) = A~ and [T]'(A-,A+) = A+. As- 

sume ei,...,en G A-. We are to show that (Hpei,... ,Hpen) G A+. By 
admissibility of A-, in particular by the strictness condition of admissibility, 
there are two cases to consider. 

SubCase e^ ft, for all 1 < k < n: Then also 11^ e& ft, for all 1 < k < n, 
so by admissibility of A+, the required follows. 

SubCase ek JJ-, for all 1 < k < n: Then, as A~ = *(A+, A-), (ei,..., e„) = 
(in wi,...,in vn) for some (v\,...,vn) G [TP](A

+
,A-) (recall that we are 

working over equivalence classes). There are two subcases. 
SubSubCase i = 0: Then IR e^ ft, for all 1 < k < n, by Lemma 3.46, so 

by admissibility of A+, the required follows. 
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SubSubCase i > 0: Then by Lemma 3.47 (aplicable as i > 1), h Tllpe « 
in (H*.-1^) : p. By induction (note that (i - l,rp) < (i,p) in the lexi- 
cographic order), we get that (l4;V ,... ,l4;V ) G [TP](A~,A

+
). By 

admissibility there are two cases to consider. 
SubSubSubCase njr1 vk ft, for all 1 < k < n: Then also n*,efc ft, for all 

1 < k < n, so by admissibility of [p](A~, A+), the required follows. 
SubSubSubCase W~l vk ^, for all 1 < k < n: Then Hjr1 vk = v'k, for all 

1 < k < n such that (v[,... ,v'n) G [rpJ(A~,A+), whence by Lemma 3.11, h 
Up ek &\nv'k: p, for all 1 < k < n, so by definition of *, (ITp ei,...Wpen) G 
#(A_, A+) = A+ = Jp](A+, A-), as required. 

Case T = n x r2: Then [r](A+, A") = [TI](A+, A") x [r2](A+, A") 
and [rl(A-,A+) = [n](A-,A+) x |r2](A-,A+). Assume (ei,...,en) G 
[r](A+,A-). We are to show that (II«. ex,... ,11». e„) G [r](A-,A+). By 
admissibility there are two cases to consider. 

SubCase ek ft, for all 1 < k < n: Easy. 
SubCase ek J|, for all 1 < k < n: Then by definition of |n](A+, A-) x 

[r2](A+,A-), efe = {v'k,v'k'), for all 1 < k < n, (v[,... ,v'n) G [TI](A+ A"), 
and «, ...,<) G [r2](A+, A"). By Lemma 3.43, h n«. ek « (irn «£, ,)irn < 
TI x r2, for all 1 < A; < n. By induction on (i, TI), (^,..., v'n) G [ri](A  , A+). 
By induction on (i,r2), («",...,«") G |r2](A~,A+).   By admissibility of 
|ri](A_, A+) and [T2](A~, A+), there are three subcases to consider. 

SubSubCase WT1 v'k ft, for all 1 < k < n: Easy using Lemma 3.43. 
SubSubCase WT2 v'k' ft, for all 1 < k < n: Easy using Lemma 3.43. 
SubSubCase h II^ v'k « vk> : ri for some (vy,..., vn>) G [TI](A~, A+) 

and h 11^^' « vfc» : r2 for some (vy> ,...,vn») G |T2](A
_
, A+): By 

Lemma 3.9, h 11^ ek fa {vk>,vkn) : T\ x T2, so by defmtion of [TIJ(A~, A+) x 
|r2](A~, A+), the required follows. 

Case T = T\ + r2: Similar to the case for r = T\ X T2, using Lemmas 3.44 
and 3.10. 

Case T = TX-+ r2: Then [rl(A+, A") = [nKA", A+) - [^](A+, A") 
and [r](A-,A+) = [r1](A+,A-) - |r2](A-,A+). Assume (eu...,en) G 
[T](A+,A-). We are to show that (n*.ei,...,IPTe„) G [T](A-,A+). By 
admissibility there are two cases to consider. 

SubCase ek ft, for all 1 < k < n: Easy. 
SubCase ek JJ-, for all 1 < k < n: Then (ei,...,e„) = (vi,...,vn) for 

some (vi,... ,vn) G |r](A+, A~). By definition of —>■  we thus have 

(e'1,...,e^)G[r1](A-,A+)=>(Wie'1,...,«ne;)G[r2](A
+,A-)       (56) 
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By Lemma 3.45, for all 1 < k < n, 

h nt e* « Aa::ri.nj, (vk (IIj, x)) : n - r2 

Assume (e'l5..., e'n) G [TI](A
+
, A-). By definition of -s- it then suffices to 

show that 

(Xx:n.K2 (Vl (n
J

Tl x)) (ei),..., Axm.14 («n (nj, a)) (ejj) G [r2](A-, A+) 

By admissibility there are two subcases. 
SubSubCase e'k -ft-, for all 1 < k < n: Easy. 
SubSubCase e'k JJ-, for all 1 < k < n: Then (e[,...,e'n) = (v[,..., v'n) for 

some «,..., v'n) G [ri](A+, A-). Then, for all 1 < k < n, 

h Axin-nj, (ÜJb (nj, x)) (e'fe) « K2 (vk (nj, «£)) : T2 

By induction on (t, n), (11^ uj,..., 11^ <) € [n](A-, A+). Hence, by (56), 

(Vl (I4 «!),..., Vn (I4 <)) G [r2](A+, A") 

By admissibility there are two cases to consider. 
SubSubCase vk 11^ vjj. f|~, for all 1 < & < n: Easy. 
SubSubCase vk WTl v'k ^, for all 1 < k < n: Then (vi WTl v[,...,vn WT1 v'n) = 

«,...,O for some (<, ...,<) G [r2](A
+, A"). Then, for all 1 < k < n, 

r- WT2 (vk (II*, t£)) « I42 < : r2 and by induction on (i, r2), (IT;2 <,..., Ilj, <) £ 
[r2|(A   , A+). Hence by admissibility of [r2](A   , A+) and transitivity of «, 
the required follows. D 

Lemma 5.13 For all i 6 N, -K{ : A" C A+. 

Proof By induction on i. 
Basis (i = 0):      Assume (ei,..., e„) G A-. By Lemma 3.46 and since 

h 7T° SO n° : p -^ p, 7T° e& ff, for all 1 < fc < n.  Hence, by admissibility of 
A+, (7T° ei,..., 7T° en) € A+, as required. 

Inductive Step:     We assume it holds for i and show for i + 1. Assume 
(ei,..., e„) G A~. By admissibility of A~ there are two cases to consider. 

Sub Case ek -ft, for all 1 < k < n: Easy. 
SubCase (ei,...,e„) = (in vi,...,\n vn) for some {v1,... ,vn) G [TP]](A

+
, A-): 

By Lemma 3.47 (applicable as i + 1 > 1),   h np
+1 e^ ~ in (n^. vk) : p, for 

all 1 < A; < n.  By Lemma 5.12, (II^ui,...,^^) e [TJ(A-,A+).   By 
admissibility of |rp](A

_, A+), there are two subcases to consider. 
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SubSubCase U\. vk ff, for all 1 < k < n: Easy using Lemma 3.5. 
SubSubCase (n^ vu ..., WTp vn) = {v[, ...,v'n) for some (^,..., v'n) G 

[TP](A~, A+): Then by transitivity and Lemma 3.7, h ITJ+1 ejt « in ^ : p, 
for all 1 < ife < n, so by definition of* (W+1 eu..., IIJ+1 en) G *(A", A+) = 
A+, as required. D 

Lemma 5.14 

7r°° : A" C A+ 

Proof Let (ei,...,en) G A". We are to show that (7r°°ei,... ,7r°°en) G 
A+. By admissibility of A+ (Lemma 5.11, item 1), with I = N in the def- 
inition of admissibility, it suffices to show Vi G TV : (ir1 ei,..., 7r2 en) G A+. 
But this follows from Lemma 5.13. □ 

Lemma 5.15 

A" c A+ 

Proof By Lemma 5.14, Theorem 3.70 and the fact that admissible relations 
are over equivalence classes w.r.t. operational equivalence. 0 

Lemma 5.16 

A" = A+ 

Proof By Lemmas 5.11 and 5.15. □ 

Definition 5.17 

A =f A+ 

Definition 5.18 For all T define RT 
d= [T|A+. 

This completes the construction of relations RT for all r. 

We now aim to show "The Fundamental Theorem of Logical Relations" 
which states that the relational interpretation of types is sound in the sense 
that well-typed terms are related to themselves by the relation associated 
to their type. To this end we first extend the interpretation of types as 
relations to type environments. 
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Definition 5.19 For all type environments F, 

Rr    =    {(ji, ■■■,7n) | 
(\/i E l..n : ji is an expression substitution for T) A 
(Vx G Dom(r) : (7l(x),... ,ln{x)) e Rr{x)) } 

Theorem 5.20 IfT \- e : r and (71,... ,7^) E Rr, then (71(e),... ,7n(e)) E 
RT. 

Proof (Sketch)    By induction on T \- e : r.   In the case for T-FIX, by 
admissibility of the relations Rr, for all r, it suffices to show, for all i E N, 

(fix fix-.n).^),... ,fix r(x:Ti).7n(e)) E R Tl-^T2 

but this is easy to show by an inner induction on i using the outer induction 
hypothesis. D 

6    Logical Equivalence 

In this section we shall be concerned with binary relations (i.e., n = 2) as 
constructed in the previous section. The relations can be used to define a 
notion of logical equivalence as follows. 

Definition 6.1 (Logical Equivalence) For all e,e' E ExpT we define h 
e RT e' if and only if (e, e') E i?T- 

(Recall that e and e' denote the equivalence classes, wrt. operational equiv- 
alence, of e and e' respectively in the expression (e, e') € Rr.) 

Theorem 6.2 If \- e m e' : T then h e RT e'. 

Proof By Theorem 5.20. D 

Theorem 6.3 // \- e RT e' then \- e « e' : r. 

Proof Suppose h e RT e'. Let E{-T} E ECtxi be arbitrary. Further let 
r = {x !->■ r} and let eo = E{x}, 7 = {x >-)• e}, and j' = {x ^ e'}. Then 
we have that T h e : 1 and (7,7') E Rr- Thus by Theorem 5.20, we get that 
(7(eo),7'(eo)) € R\.  Thus (E{e},E{e'}) E R\, so by definition of R\, we 

e : r, have that -E?{e} ss   i£{e'}. Hence as £^ was arbitrary, we have  h e 
as required. D 
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Definition 6.4 (Open Logical Equivalence) For all e and e', ifT\- e: 
T and r h e' : T, then we define T h e Rr e' if and only if for all value 
substitutions 7 and 7' for T satisfying (7,7') G Rr,   r- 7(e) Rr l'(e')- 

Theorem 6.5 F \- e & e' : T if and only ifY\-eRTe'. 

Proof Suppose T \- e RT e' and let 7 and 7' be value substitutions sat- 
isfying (7,7') G Ry. Then Vx G Dom(r) : h 7(2;) i?r(a;) 7'(x). Hence by 
Theorem 6.3, Vx G Dom(r) : h 7(3;) « 7'(a;) : T(a;). Thus from our assump- 
tion we get that h 7(e) « 7'(e') : r so by Theorem 6.2, h 7(e) i?r V(e'), as 
required. 

For the other direction, suppose that F\- e RT e'. Let 7 and 7' be value 
substitutions such that Vx G Dom(r) : h 7(2;) w 7'(a;) : T(x). Then by The- 
orem 6.2, we have that Vx G Dom(r) :  h 7(2;) i?r(a;) 7'(aj). Thus from our 

11 „i\ : r assumption we get that H 7(e) Rr y'{e') so Theorem 6.3, h 7(e) « 7 (e; 

as required. D 

In summary, what we have so far is that contextual equivalence is equiv- 
alent to open experimental equivalence which is again equivalent by to open 
logical equivalence. In symbols 

h e ssc e' : r     <=$■     T h e « e' : T    Corollary 3.35 
T I- e i?T e'       Theorem 6.5. 

Hence we may use logical equivalence to prove experimental and con- 
textual equivalence. This is especially useful, as we shall now show, since 
we can derive a useful coinduction principle for establishing logical equiva- 
lence. One can also derive an induction principle but we shall not go into 
that here. These principle are derived in a manner analogously to the way 
in which Pitts [17] derives such principles. For reasons of space, we shall 
be less formal in our presentation of these reasoning principles than we are 
elsewhere. 

Theorem 6.6 For all R~ G Relp and for all R+ G Radmp, the following 
inference rule is valid: 

out : R- C jrPY(R+, R-)        in  : jr,,]'(IT, R+) C R+ 
R- C A C R+ 

Remark 6.7 Note that R" is not required to be admissible. (If R~ was 
required to be admissible then the theorem would essentially just be a re- 
statement of Lemma 5.11, item 4-) 
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Proof The idea of the proof is to show that, under the given assumptions, 
7r°° : R~ C A and 7r°° : A C R+ and then use the syntactical minimal 
invariance to get the conclusion. Since A (as shown earlier) and R+ (by as- 
sumption) are both admissible, we can show this by showing it for the finite 
unrollings of 7r°°, as in the proof of Lemma 5.14. For the finite unrollings of 
7r°°, one proceeds as in the proofs of Lemmas 5.12 and 5.13. D 

We now show how to specialize Theorem 6.6 to a coinduction principle 
and give some examples of how to use it. More examples of the kind found 
in [16] may also be treated this way. 

Theorem 6.8 (Coinduction Principle) For all R £ Relp, if\n : [TPJ'(R,A) C 
A, then the following inference rule is valid: 

out :RC[TP]'(A,R) 

RCA 

Remark 6.9 Note that R is not required to be admissible. 

Proof   By Theorem6.6, letting R~ = R and R+ = A and using that 
[TP]'(R,A) = A. a 

Example For the purpose of this example, we shall assume that we have 
another ground type N and that TP = 1 + TV x p, such that p is intuitively 
the type of lists of natural numbers. Moreover, assume RN is the obvious 
equality relation on the type N (essentially defined analogously to R\). 
Then [rp]'(i?, A) = Ri + Rp? x A, for any R, and thus, by definition of 
A, in : \TP}'{R, A) = Ri + RN x A C A. Hence, for any R € Relp, we have 
that the following inference rule is valid: 

out : R C -Ri + RN x R 
RCA 

Unwinding the definitions, this rule says that if, whenever e Re' then either 

1. out e -ft- Aout e' ff; or 

2. out e !->■* inlyvx/r; * A out e' H->* inl^vxp *; or 

3. out e i->-* inri (n, v) A out e' t-»* inri (n, v') Av R v'; 

then e R e' => e A e'. 
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Let us now further assume that the list function map is defined as usual: 

map    =   fix map (/:N —^ N).Xx:p. 
case(out x, Ay:rp.in (inl^xp *), Ay:rp.in (inrx (/ (fst y), map f (snd y)))) 

and that swcc is the successor function for the type of natural numbers 
and that o is the functional-composition term. We want to show that 
map succ (map succ e) is experimentally equivalent to map (succ o succ) e, 
for all e : p. By Theorem 6.3 it suffices to show that they are logically 
equivalent. To show that they are logically equivalent, we can apply our 
coinduction principle. To this end we let 

R z= {(map succ (map succ e), map (succ o succ)e) | r- e : p}. 

One can now show that whenever e R e', then the three items above are 
satisfied. Hence we can conclude that e Re' implies that e A e' so recalling 
that Rp = A, we have that map succ (map succ e) is indeed logically equiv- 
alent to map (succ o succ)e, for all e such that he:/). □ 

Example In this example, we shall again assume that we have a type of 
natural numbers N. We shall consider streams of natural numbers. Streams 
are implemented by means of functions, as is often the case in languages with 
call-by-value semantics. Thus we shall consider the case where rp = 1 —*■ 
N x p. Then one can show that in : [rp]'(Ä, A) = Ri ->• RN x A C A. 
Hence, for any R £ Relp, we have that the following inference rule is valid: 

out : R C 1 ->■ RN x R 
RCA 

Unwinding the definitions, this rule says that if, whenever e Re' then either 

1. out e * ft" Aout e' * f|-; or 

2. out e * (->■* (n, v) A out e' * H->* (n, v') A v R v'; 

then e R e' => e A e'.   Pitts [16] also derives a coinduction principle for 
infinite streams in his theory of program equivalence based on bisimulation. 
Pitts' coinduction principle corresponds closely to the one we have obtained 
here by specializing the recursive type to the type of streams. 

Consider the following terms: 

ones = fix ones(x:l).(1, in (Xx:l.ones *)) 
twos — fix twos(x:l).(2, in (Arr:l.twos *)) 
succstr   =   fix succstr(s:p).Xx:l.(Xp:N x p.(succ fst p,in (succstr (snd p)))) (s *) 
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Intuitively, ones is the streams of all ones, twos is the stream of all twos, 
and succstr is the successor operation on streams which applies the succes- 
sor function to every element in the stream. Thus we would expect that 
succstr ones is operationally equivalent to twos. We can show this using 
coinduction, by considering the relation 

R = {(twos, succstr ones)}, 

because supposing that e R e', one can see that item 2 above is satisfied. 
Thus we conclude that RCA and thus that succstr ones is logically equiv- 
alent (and hence operationally equivalent) to twos. D 

7    Correctness of CPS Transformation 

We define the cps transformation as a relation between a "source" and a 
"target" language. The source language, Cp, is just the language C defined 
earlier. The target language, Cp*, is the variant of C obtained by replacing 
the single recursive type p by another recursive type p* obtained from p by 
a transformation on types similar to that given by Meyer and Wand [12]. 

We let Typep denote the set of type expressions of £p, that is Type'' = 
Type. The set of target type expressions, denoted Typep , is defined exactly 
as Type, but with p* for p. 

Below we define two type translations from Typep to Typep , one for 
computations, f, and one for values, r* and extend the one for values to 
type environments. Note that the case (p)* = p* is not recursive; it reads: 
"the value type translation of the source type p is the target type p*." 

Computations f   =    (r* —> 1) —> 1 

Values 0*    =   0 
1*    =    1 

(P)*    =   P* 
in x r2)*   =  n* x r2* 
(TI + TVJ)*   =   n* + r2* 

(n -*■ T2)*   =   n* -± 75 

Type Environments r*(x)    =    (T(x))*    (x £ Dom(r)) 

In the target language Cp* we take the recursive type p* to be isomorphic 
to TP*. 
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r h x : T ~*v x    (T(x) = T) (CPS-VAR) 

rh*:l-»„* (CPS-ONE) 

T[/ : n -^ T2][x : Ti] h e : T2 ~>c e' 
-    (/,^Dom(r)) 

T h fix f{x:T\).e : Ti -^ T2 -~>v fix f(x:T\*).e 
(CPS-FIX) 

r I- u : r -^u u' 
(CPS-VAL) 

T \- v : T -^c Xk:r* —*> l.kv' 

Figure 3: CPS Transformation — Part I 

We shall use the same notation for both the source and target language, 
but we must take care to remember to which language we are referring. Of 
course, all the results obtained in previous sections for C hold analogously for 
both the source and target language (for the source it is obvious as it is equal 
to £, for the target, just replace p with p* and TP with TP* everywhere) and 
we will freely refer to these results to reason about both the source and the 
target language. When we need to distinguish between sets of expressions 
of the source and the target language, we shall use the notation developed 
for C but use a superscript p for the source language and a superscript 
p* for the target language. For example, Exp£ denotes the set of closed 
expressions of type T of the source language, whereas Exp£ denotes the set 
of closed expressions of type r of the target language. Moreover, we will 
abuse notation and write e «fc e', for e € Exp^ and e' € Exp^ , to mean 
that e evaluates to * in Lp if and only if e' evaluates to * in Cp . 

The translation relations r t~ v : T ^>V V' for values and r h e : r ~->c e' 
for computations are inductively defined by the rules in Figures 3 and 4. 

Lemma 7.1 

1. r h e : T ~^c e' for some e' iffThe-.T. 

2. //T I- v : T ~»„ v', then V* h v' : T* . 

3. If T h e : r -wc e', then V* \- e' : r. 

We extend the notion of experimental equivalence to evaluation contexts 
as follows. 

58 



r h ei : ri -wc ei        r h e2 : r2 ~>c e'2 

T h (ei,e2) : n x T2 ~>c Afc:(ri x r2)* ->■ l.e^ (Aa;i:ri*.e2 {\X2:T2* .k{xi,x2))) 
(CPS-PROD) 

r h e : TI x r2 ~~>c e' 
(CPS-FST) 

(CPS-SND) 

r h fst e : n -wc Xk-.Ti* ->■ l.e' (AO::TI* x r2*.fc (fst a;)) 

r h e : TI x r2 ~^c e' 

T h snd e : r2 ~*c AA;:r2* ->■ l.e' (Arc:ri* x T2*.& (snd a;)) 

r h e : T\ ~>c e' 

T h inlT2 e : ri + r2 ~~»c Afc:(ri + r2)* —*■ l.e' (A:E:TI*.A; (inlT2* x)) 
(CPS-INL) 

T h e : T2 ~->c e' 

T f- inrTl e : Ti + r2 ~~*c Aä;:(TI + r2)* —^ l.e' (Ax:r2*.A; (inrTl» x)) 
(CPS-INR) 

V \- e\ : TI + T2 -^c e[        T \- e2 : T\ -*■ r -^c e2        r h 03 : r2 -^ r ~>c e3 

T h case(ei,e2,e3) : r ~*c A&:r* —*■ l.e[ (\X:T\* + T2*.case(x,e'2xk,e'3xk)) 
(CPS-CASE) 

r h ei : T2 —*• r -wc e'x        T h e2 : r2 -^c e'2 

r f- ei e2 : r ~>c Afc:r* —*■ l.e'j (A:EI:(T2 —*■ r)*.e2 (Aa;2:r2*.a;i a:2 A;)) 
(CPS-APP) 

T h e : p ~~»c e' 

T h out e : Tp ~»c \k:Tp* —*■ l.e' (Xx:p*.k (out a;)) 

T h- e : Tp -wc e' 

T h in e : p -wc A&:p* -*• l.e' (\X:TP*.k (in x)) 

Figure 4: CPS Transformation — Part II 

(CPS-OUT) 

(CPS-IN) 
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Definition 7.2 For all E{^T},E'{.r} G ECtxT>, we define 

H £{_r} « E'{-r} : r'  «=»  (Ve, e' G £spT :  r- e « e' : r =» h £{e} « £'{e'} : /)• 

As in Section 4 we denote equivalence classes by one of their represen- 
tatives. 

Theorem 7.3  There exists a Type''-indexed family of relations 

AC
T   C   ExpP /« x Exp( /« 

AV
T    C    V< /« x Va£ /« 

A*   C   £Cfo£ /« x Vb^Li /- 

satisfying 

e A< e' 

V AT «' 
V A« «' 
V AS «' 

V Av «' 

V AU 
«' 

V A? _^T2 «' 

E{.T} A* u' =► £{e} ?zk e' 

v = *,i/ = * 
newer 
h u K in Wi : /),   h v' ~ in v[ : p*, V\ A*  ux 

h v « («i, «2) : Ti x r2,   ht/» K, v'2) : n* x r2*, 
Vl A"n v[, v2 A%2 v'2 

(ht)« inlT2 «i : ri + r2, hv'« inlT2* «i : n* + r2*, t>i A^ vj) 
V (hi)» inrTl vi : ri + r2, h«'« inrTl» i>i : rx* + r2% ux A^2 «i) 
=»     vi A^ v'x 4ti«i A£2 v' v[ 

E{.T} A
k

T v'    «=4>    vx A
V

T v[ =► £{>i} «fc «' «i, 

and 

(V* G AT : fix f (x^.e A^T2 fix /i(i:Ti').e') => fix /(z:n).e A^T2 fix f {x-.n*).e'. 

(Note that the conditions satisfied by the relations are all independent of the 
choice of equivalence class representative and are thus well-defined condi- 
tions.) 

The proof of this theorem will be postponed until Section 7.1. Now we 
shall first see how to use the relations that exists by the theorem to prove 
the correctness of the cps transformation. 
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Definition 7.4 Let A£, A", and A^ be relations as in Theorem 7.3. We 
then define a source type environment indexed family of relations, Ar, re- 
lating source value substitutions for V modulo experimental equivalence1 to 
target value substitutions for T* modulo experimental equivalence as follows: 

7 Ar 7' <^=» Vx e Dom(r) : j(x) Ar(x) 7'(z). 

Theorem 7.5 

1. If V h v : T ~>v v' and 7 Ar i, then j(v) AV
T i{v'). 

2. IfThe:T^ce' and 7 Ar 7', then 7(e) AC
T V(e'). 

Proof By simultaneous induction on T h v : T ^, v' and T h e : r ~~»c e'. D 

Corollary 7.6 (Correctness of cps transformation) If \- e : 1 ~~>c 
e'> 

then e' wfe e(Aa;:l.a;). 

7.1    Construction of Relations for CPS Correctness 

In this section we prove Theorem 7.3. This amounts to constructing rela- 
tions satisfying the conditions in Theorem 7.3. The idea is to proceed as in 
Sections 4 and 5 but, of course, with a different universe of relations and 
with different relational constructors. 

We define a source type indexed family of universes of relations as follows. 

Definition 7.7 For all source types T, we define a universe of relations 

RelT 
d= V ((Expp

T /«) x {Expfc /»)) . 

We use R to range over RelT. 

Notation 7.8  When I E Vcof(N
k+l) we write "mm! "for "(ii,..., ik,ik+i, • • • > h+i) € 

I and rfi = (ii,...,ik) and m! = (ik+i, ■ ■ ■ ,ik+l)-" 

As in Section 4, we shall also use a notion admissibility. 

Definition 7.9 A relation R £ RelT is admissible if and only if it satisfies 
both of the following conditions. 

1Recall the definition of experimental equivalence for substitutions, Definition 3.26. 
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Strictness: (e, e') G R iff (e ft Ae' ft) V (3v, »':e4*»Ae'^D'A (v, v) G 

Ä). 

Completeness: For aH C{p} G Cta£ mf/i a// parameters in p of type T\ —^ 

T2, /or a// C'{q} G Cfcr£* wii/i a// parameters in q of type (T\ —^ T2)*, 
/or a// Fw = fix /(z:ri).e G Expp

Tl^T2, for all F^ = fix /(x:Ti*).e' G 

(Vmm' G / G Pcoi(N^+^) : (C{FÄ},C'{FÄ,}) G i?) =» 

{(C{FU},C'{F^})ER)). 

Definition 7.10 For all source types T, we define a universe of admissible 

relations Radmr as follows. 

RadmT — {R G RelT \ R is admissible} 

We also use R to range over RadmT. 

We now define a series of relational type constructors, just as in Section 4. 
In each case, one has to check that the definitions we give are independent 
of the chosen equivalence class representative; this is straightforward in all 
cases (it is just like in Section 4). 

Definition 7.11 

R0 = { (e, e') G (Expp
0 /») x (Exp( /») | e ft A e' ft } 

Definition 7.12 

Rx 
dM { (e, e') e (Expp /«) x (Exp( /«) | (e ft Ae' ft) V (e ^* * A e' H->* *) } 

Definition 7.13 For all Ri G Reln and R2 G RelT2, 

Rx x R2    =    { (e, e') G (£< XT2 /«) x (£<*XT2 /«) | 
(e ft Ae' ft)V 

(3wi,V2,f'i,w2 
: •" e ~ (^1)^2) : n x T2A 

he'« (vi,«2) 
: rl* x T2*A 

(t>i,«i) GÄi A(v2,v2) GÄ2)} 
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Definition 7.14 For all R\ G RelTl and R2 G RelT2, 

Rr + R2   
d^   { (e, e') G (Expp

n+T2 /«) x (Expf1+T2 /«) | 
(e fr Ae' fr)V 
(3v, v' : he« inlT2 w : T\ + r2 A he'« inlT2* v' : n* + T2*A 

(v,v') Gi?i)V 
(3u, v' : he« inrTl v : T\ + r2 A he'« inrT1* v' : T\* + r2*A 
(«,«') GÄ2)} 

The following relational constructors will be used in the definition of the 
relational constructor for function types. 

Definition 7.15 For all R G RelT, 

Ak
T (R)   Hf   { (£{_T}, v') G {ECtx% /«) x (VafT:^ /«) | 

V(e,e') Eß:B{e}«k»V} 

Definition 7.16 For all R G iteZr, 

A« (R)    ~    { (e, e') G (Extf /«) x (ßcpf /«) | 
(e ft" Ae' f|-)V 
(3u, v' :  h e « v : r A h e' « i/ : rA 

V(Eo{_T},^) GA* (i?) : £0M «fc «'«&) } 

Definition 7.17 For all Ri G RelTl and R2 G RelT2, 

(e ft Ae' fr)V 
(3u, v' :  h e « w : T\ —»■ T2 A h e' « v' : T\* —*■ T^A 

V(ei,ei)Gfii:(«el!W'ei)GA^(Ä2)} 

Note that Ü4 —^ i?2 is antimonotone in i?i and monotone in R2. 
By proofs exactly analogous to the proofs in Section 4 of the correspond- 

ing results, one can now show that (RadmT, C) is a complete lattice, for all 
source types r; a lemma corresponding to Lemma 4.11 holds; RQ and R\ are 
admissible; and x and + both preserve admissibility. We now show that 

—*•  preserve admissibility: 

Lemma 7.18 For all Ri  G  RelTl  and all R2  G RadmT2, Ri  —>■ R2  G 
Radm7 "Tl-^T2- 
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Proof The strictness condition is straightforward (as in the proof of Lemma 4.14). 
For completeness, assume 

\tfhm' e I e 7>Cof(ArlPl+lql): (CiF^C'iF^,}) e R. (57) 

By the lemma corresponding to Lemma 4.11 there are two cases to consider. 
Case I: C{FU} ft AC'{F^} ft Easy. 
Case II: C{FUJ) ^* v and C'{F^} (->■* v'.   By two applications of 

Lemma 3.22, there exist V{p[} and F'{dfi} such that 

v   =   V{FU} C{p}    i^F    V{p[} 

v>   =   V{Fi] C'{q}   %?   v"{ql} 

so 

l[ =f {mm' | mn G I A C{Ffh} ^* V{FM} } G V^N^^) 

and 

J2 
d=lf { nn" | mn G I A C'{Fn} ^* V{Fff} } G Vcof{N^+^). 

Thus 
I" d= {rh'n' | mm! G I[ Ann! G I2 Arhn G I} 

is cofinal, i.e., I" G PcofC^P'il+lq'il). By (57), Lemma 3.7, and definition of 

'"' 
Vrh'n" G I" : (V{FM}, V'{Fn,}) G R, - Ä2. 

Hence, by definition of —>■ , 

Vrtin' E I" : V(e,e') G i?i : (V{F^}e,V{F^}e') eAc
T2 (R2). 

Let rh'n' G J" and (e, e') G i?i be arbitrary.  By definition of A%2 (#2) we 
then have that 

V(E0{„T2},v'0) eAk
T2 (R2) : ^{^{^}e} ** ^l^i        (58) 

We are to show that 

\/(E0{-T2},v'0) eAk
T2 (R2) : E0{V{Fu}e} «fe F'K}e'^. (59) 

Let (E0{-T2},v'0) eAk
2 (R2) be arbitrary. Suppose E0{V{FÜJ}e} ^* *. Let 

Cii{pl} = ^o{V{pl}e}. Then by Lemma 3.22, 

Cu{p[} $F *■ 
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Hence 
In = { m'n' \ m'n' El A Cn{FA,} ^* * } 

is cofinal, thus non-empty. So there exists m'n' E / such that Cn{Fw} \-t* 
*, i.e. E0{V{F^}e} ^* *. Hence, by (57), V {F'H,} e'v'Q ^* *, from which 
V'{F^}e'v'0 !->■* * follows by Lemma 3.23. The other direction is similar, 
completing the proof of (59). Thus we conclude that (C {F^}, C {F^}) E 
Ri —^ R.2, as required, since (e, e') and (Eo{-T2},v'0) 

were arbitrary and us- 
ing Lemma 3.7. D 

For all source types r E Typep we define an interpretation [r]' exactly 
as in Definition 5.5. 

Definition 7.19 Define * : (Radm°p x Radmp) —> Radmp by 

*(R-,R+)   d^f   {(e,e>) E (ExpP/*) x (Expfc /«) | 
(e ft Ae' f)V 
(3t>,«' :  h e » in v : p A h e' « in u' : p* A (u,«') <E [rPl'(i2

_, i?+)) } 

Just like in Section 5 it is now easy to show that \& is well-defined. 
We define \I>§ : (Radm°p x Radmp) —»■ (Radm°p x Radmp) and as in 

Section 5 we get that \I>§ is well-defined and monotone, so that we can 
define (A-, A+) as the least fixed point of \I/§. Moreover, Lemma 5.11 holds 
also now. 

We write (e, e') : R C R' for V(ei, e'J e -R : (e ei, e' e\) E R'. 

Lemma 7.20 For all i E N, for all r E Typep, 

(H^,Hf/) : [r]'(A+, A") C [r]'(A-, A+). 

Proof By induction on (i,r), ordered lexicographically. All the cases are 
as in the proof of Lemma 5.12, except the case for T = T\ —^ T2, which we 
now consider. Then 

[r]'(A+, A") = [n]'(A-, A+) - Ir2]'(A
+,A-) 

and 
[r]'(A-, A+) = [r1]'(A+, A") - IT2]'(A", A+). 

Assume 
(e,e')e[rl'(A+,A-). 
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We are to show that 

(n^r2e,nf^we')e[r]'(A-,A+). 

By admissibility there are two cases to consider. 
SubCase e ft Ae' ft: Easy. 
SubCase   h e « t; : r A  h e' « v' : T* for some (v,?/) G [r]'(A+, A-): 

By definition of -^ , we thus have 

(ei.ei) e [n]'(A-,A+) =* (vel,v'e'1) eA% ([T2]'(A+,A")) (60) 

By two applications of Lemma 3.47 we get that 

H n£LT2 e « Aa;:ri.n^ (« (IT^x)) : n -* 75 

and 
h <LW e' « AzinMI^ («' (<f z)) : n* - 75. 

Assume 
(e1,e

/
1)€[r1]'(A+ A"). 

It then suffices to show that 

[\x:n.U^ (v (n?f x)) euXx-.n*^ («' (<;*■ *)) e'x) €A^2 ([r2]'(A-, A+)). 

By admissibility there are two subcases to consider. 
SubSubCase e\ ft Ae[ ft: Easy. 
SubSubCase    h ei  « «i  : n A   h e^  « v[  : ri* for some {v\,v[) £ 

[nl'(A+,A-): Then 

h \x:nJI% (v (UPf x)) ei « n^ (« (n# wi)) : r2 

and 
h Ax:rx*.n^ (v' (11*7 *)) ei « Dg'* (t/ (<f «i)) : n- 

By induction, 

(n^«1,<iit;i)e[n]'(A-,A+). 

Hence, by (60), 

(vU^vl,v'U^iv[) EAC
T2 ([r2]'(A+,A-)). 

By admissibility there are two cases to consider. 
SubSubSubCase v n?f vx ft Av' n£V v[ ft: Easy 
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SubSubSubCase   h vH^ v\ « i^ : r2 A  H t;'Il£ J* Vj « i>2 : T2 for some 
(v2,v'2) eA£2 ([T2]'(A

+
, A-)): Then it suffices to show that 

(n?>2,ng^2)GA^2([r2]'(A-,A+)). 

To this end, assume 

(E10{.T2},vw) SA*2 ([r2l'(A-,A+)). (61) 

We are to show that 

E10{U^v2}^
kn^iv'2vw. 

Since 
r- Il£* ^ «10 ~ v'2 (\X':T2*.V10 (<f x')) : n 

it suffices to show 

E10{U^v2} «
fc v'2 (Xx':r2*.v10 (n&V)). 

Hence it suffices to show that 

{Ew{IiPT^2},\x':r2\vlQ{Iip;jx')) €A*2 (Ir2J'(A+, A")). 

(because then the above follows since (w2,v2) 
e^r2 (IT2j'(A+, A~))).   To 

this end, assume 
(en,e'ii)e[T2]'(A+,A-). (62) 

We are to show that 

E10{n
PTten}~k(^'--r2*.vio(np

Tl?x'))e'u. 

Since 
h (Xx':r2*.v10 (Uf/ x')) e'n « vio «Y e'n) : 1 

it suffices to show 

£10{n^en}^o(<;Vn). (63) 

But by induction on (62), 

(n^eil,<Vei1)G[r2l'(A-,A+), 

so by assumption (61), the required (63) follows. D 
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Lemma 7.21 For all i e N, (ir™, np*'*) : A" C A+. 

Proof As the proof of Lemma 5.13. □ 

Lemma 7.22 

(TT"'
00

,^*'
00

): A" CA+ 

Proof As the proof of Lemma 5.14. D 

def 
As in Section 5, it now follows that A" = A+ and we can define A = 

A+. 

Definition 7.23 For all source types r £ Typep
; we define 

A^f[r]'(A,A). 

Definition 7.24 For all source types T € Type'', we define 

AV
T    =    {(e,e')eAe

T\ e^Ae'^} 

Ak   def   ^E{_r}y)G(ECK/^)x(Val^1M \ (v^v'^eA^Eivj^v'v} 

AC
T   H

f   { (e, e') € (ExpP /«) x (Exp£ /») | (£{_,}, v') €A*=J- £{e} «* e' v' } 

Lemma 7.25 The above defined relations satisfy the conditions in Theo- 
rem 7.3. 

Proof All the conditions, except the one for Av
Tl^T2 and the completeness 

condition, are obvious from the above definitions. By definition of A^^^, 
we have that 

v A^T2 v' <=^   (ei A^ ei =► v ex A
C

T2 v' ei) , 

but it is easy to check, using the definition of A£2, that 

(ei Ae
n ei =» vei A^2 i/ei) <!=}► («i A£ «!=»««! A*2 w'ui) 

which gives the required. The completeness condition for A^T2 follows by 
admissibility of Ae

n^T2 (using I = {(i,i) | i e N} a the cofinal set) and 
the facts that fix f(x:n).e ty and fix f(x:Ti*).e' JJ-. D 

This completes the construction of relations for CPS correctness. 
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8    Related Work 

The construction of relations over recursive types hinges on a syntactic ver- 
sion of the minimal invariant property of the solution of a domain equation. 
The critical ingredient in the construction is Pitts's observation [17] that the 
existence of a relational interpretation can be reduced to minimal invariance, 
combined with the observation that this criterion can be stated and proved 
at a purely operational level. The proof of syntactic minimal invariance is 
a generalization of methods used by Mason, Smith, and Talcott [11] to a 
typed language with a recursive type. In addition to the applications given 
here this generalization sheds light on the need for "run-time type checks" 
in Mason, Smith, and Talcott's work — they arise here as compositions of 
recursive unrolling and case analysis on a disjoint union type, confirming 
Scott's observation that "untyped" really means "unityped". 

The two applications of relational interpretations suggested here — an- 
alyzing contextual equivalence and proving correctness of the cps transfor- 
mation — have been studied elsewhere using different methods. Pitts has 
emphasized the importance of a characterization of contextual equivalence 
for a language with streams as a bisimulation relation constructed as the 
maximal fixed point of a monotone operator on relations [16]. To apply 
this framework to specific examples Pitts relies on a lemma characterizing 
contextual equivalence of values of stream type. In our setting this lemma 
arises as a simple consequence of the definition of logical equivalence rela- 
tion for a recursive type, as outlined in Section 6. Several authors have 
considered the correctness of the cps transformation. Reynolds [20] gives a 
proof for an untyped functional language by working over a domain model 
given by an inverse limit construction. Meyer & Wand [12] give a somewhat 
different proof for the simply typed A-calculus (without a recursive type). 
The proof given in Section 7 generalizes both of these to a typed language 
with a recursive type without appealing to a denotational semantics. 

9    Conclusion 

We have presented a method for constructing relational interpretations of 
recursive types in an operational setting. The key result is the syntactic 
minimal invariant property up to a suitable notion of operational equiva- 
lence. With this in hand we may define relational interpretations of types 
over operational equivalence classes of closed terms. Using this construc- 
tion we give a relational characterization of experimental and contextual 
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equivalence and derive a coinduction principle for establishing contextual 
equivalence. Taking the recursive type to be the type of infinite streams, 
the coinduction principle specializes to a principle corresponding to the one 
used by Pitts [16] in his theory of program equivalence based on bisimula- 
tion. Using our construction we further give a relational proof of correctness 
of cps conversion, generalizing Reynolds' proof to the typed setting. 

The proof of correctness for the cps transformation that we give here 
does not appear to extend easily to a language with control operators such 
as call/cc [1, 10]. The reason is that we rely on a "uniformity" property 
of the evaluation relation which states that evaluation steps are parametric 
in the evaluation context — if E{e) \-¥ E{e'}, then E'{e] (->• E'{e'} — that 
fails in the presence of call/cc. It is also unclear whether our proof can be 
extended to a language with mutable storage. One possible approach may be 
to consider a store-passing transformation in which the store is represented 
by a value of a recursive type, and then to apply the methods considered 
here to complete the proof of correspondence between the original program 
and its cps transformation. 

The treatment of cps conversion given here invites generalization to an 
arbitrary syntactically-definable monad for the language. Filinski's disser- 
tation [3] is a first step towards a general theory of representation of compu- 
tational effects. Filinski's work suggests that one could give a fairly general 
correctness proof along the lines suggested here for a wide variety of defin- 
able effects. 
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